Trane SYS-APM001-EN manual Condenser-Water System, Cooling tower, Primary-secondary system

Page 19

Primary System Components

Figure 13. Primary-secondary system

CV

Pump

Chillers

CV

Pump

Bypass (Decoupler)

Two-Way

VV

Control

Pump

Valve

 

Load

 

Figure 14. Variable-primary system

VV

Pump

~

Chillers

VV

Pump

~

the series, or another pumping arrangement can be considered. Reducing the flow rate affects this system type’s energy use all the time, so careful attention to flow rates and temperature is critical (refer to “System Design Options” on page 27).

Primary-secondary system

In this configuration (Figure 13), the distribution piping is decoupled from the chiller piping and is known as the primary-secondary or decoupled system. There is constant primary flow through the operating chiller(s) and variable secondary flow through the loads. A bypass pipe between the two balances the primary flow with the secondary flow. Because there are more pumps and a bypass, this system costs more than a constant flow system to install. Details on this system type are in “Primary–Secondary (Decoupled) Systems” on page 45.

Variable-primary system

This pumping arrangement (Figure 14) was made possible in recent years by advanced chiller controls that permit varying the flow through the chillers. Like a constant flow system, the distribution piping is directly connected to the chiller piping. Flow is varied through at least most of the loads and the chillers. A smaller bypass (compared to the primary-secondary system) ensures chiller minimum flow rates are avoided. Fewer pumps and smaller bypass lead to lower first costs compared to the primary-secondary system. Operation costs can also be lower, but the plant is controlled differently than in other pumping arrangements and operator training is essential. This system type is covered in detail in “Variable-Primary-Flow Systems” on page 55.

Minimum Flow Bypass Valve

Two-Way

Control

Valve

Load

SYS-APM001-EN

Condenser-Water System

As in chilled-water distribution systems, condenser-water system piping— most commonly steel, copper, or plastic—is sized to meet a project’s operating pressure, pressure loss, water velocity, and construction cost parameters. Pressure drop through piping and the chiller’s condenser, plus the cooling tower static lift, is overcome by use of a condenser-water pump.

To ensure optimum heat transfer performance, the condenser-heat transfer surfaces must be kept free of scale and sludge. Even a thin deposit of scale can substantially reduce heat transfer capacity and chiller efficiency. Specifics of cooling-tower-water treatment are not discussed in this manual. Engage the services of a qualified water treatment specialist to determine the level of water treatment required to remove contaminants from the cooling tower water.

Cooling tower

To reject heat, water is passed through a cooling tower where a portion of it evaporates, thus cooling the remaining water. A particular cooling tower’s effectiveness at transferring heat depends on water flow rate, water temperature, and ambient wet bulb. The temperature difference between the

Chiller System Design and Control

13

Image 19
Contents May Page Chiller System Design and Control Preface Contents 100 Chiller Primary System ComponentsChiller evaporator Primary System ComponentsEffect of chilled-water flow rate and variation Effect of chilled-water temperatureWater-cooled condenser Effect of condenser-water temperatureEffect of condenser-water flow rate Packaged or Split System? MaintenanceAir-cooled condenser Air-cooled versus water-cooled condensersEnergy efficiency Low-ambient operationAir-cooled or water-cooled efficiency LoadsTwo-way valve load control Three-way valve load controlFace-and-bypass dampers Variable-speed pump load control Chilled-water pump Chilled-Water Distribution SystemPump per chiller Distribution pipingManifolded pumps Constant flow system Pumping arrangementsVariable-primary system Condenser-Water SystemCooling tower Primary-secondary systemSingle tower per chiller Condenser-water pumping arrangementsEffect of load on cooling tower performance Effect of ambient conditions on cooling tower performanceChiller control Unit-Level ControlsRecommended chiller-monitoring points per Ashrae Standard Centrifugal chiller with AFD Centrifugal chiller capacity controlAFD on both chillers Small Chilled-Water Systems 1-2 chillers Application ConsiderationsVariable flow Application Considerations Constant flowCondensing method Part load system operation Application ConsiderationsNumber of chillers Parallel or seriesManaging control complexity Mid-Sized Chilled-Water Systems ChillersPreferential vs. equalized loading and run-time Large Chilled-Water Systems + Chillers, District Cooling Large chilled-water system schematicPipe size PowerWater Controls Chiller performance testingLimitations of field performance testing Chiller Plant System PerformanceSYS-APM001-EN SYS-APM001-EN Guidance for Chilled- and Condenser-Water Flow Rates System Design OptionsStandard rating temperatures Chilled-Water TemperaturesSystem Design Options Chilled- and Condenser-Water Flow Rates Condenser-Water TemperaturesStandard rating flow conditions System Design Options Selecting flow rates Low-flow conditions for cooling tower Base Case Low Flow DP2/DP1 = Flow2/Flow11.85System summary at full load Total system power Component Power kW Base Case Low FlowChilled water system performance at part load Coil response to decreased entering water temperatureSystem design Entering fluid temperature, F CCooling-tower options with low flow Smaller towerSame tower, smaller approach ΔT2 = 99.1 78 = 21.1F or 37.3 25.6 = 11.7CSame tower, smaller approach Present Smaller Approach Same tower, larger chillerRetrofit capacity changes Larger Present Chiller Same tower Retrofit opportunitiesCost Implications Misconception 1-Low flow is only good for long piping runs Misconceptions about Low-Flow RatesKWh SYS-APM001-EN Parallel Chillers System ConfigurationsParallel chillers with separate, dedicated chiller pumps System ConfigurationsSeries chillers Series ChillersHydraulic decoupling Primary-Secondary Decoupled SystemsCheck valves Production loop System Configurations ProductionDistribution-loop benefits of decoupled system arrangement System Configurations DistributionCampus CommonTertiary or distributed Tertiary pumping arrangement Decoupled system-principle of operationFlow-based control Temperature-sensingFlow-sensing Adding a chiller Multiple chilled-water plants on a distribution loopSubtracting a chiller Double-ended decoupled system Pump control in a double-ended decoupled systemChiller sequencing in a double-ended decoupled system Other plant designs Variable-Primary-Flow SystemsOperational savings of VPF designs Advantages of variable primary flowDispelling a common misconception Chiller selection requirementsFlow, ft.water Flow rate Flow-rate changes that result from isolation-valve operation Managing transient water flowsSystem Configurations Effect of dissimilar evaporator pressure drops System design and control requirementsAccurate flow measurement Bypass flow control Chiller sequencing in VPF systemsFlow-rate-fluctuation examples Adding a chiller in a VPF systemSequencing based on load Subtracting a chiller in a VPF systemSelect slow-acting valves to control the airside coils Other VPF control considerationsConsider a series arrangement for small VPF applications Plant configurationChiller selection Guidelines for a successful VPF systemAirside control Plant configurationBypass flow Chiller sequencingPlate-and-frame heat exchanger Heat RecoveryChilled-Water System Variations Condenser Free Cooling or Water EconomizerRefrigerant migration Chilled-Water System VariationsWell, river, or lake water Refrigerant migration chiller in free-cooling modePreferential loading parallel arrangement Preferential LoadingSidestream plate-and-frame heat exchanger Preferential loading sidestream arrangementChilled-Water System Variations Sidestream with alternative fuels or absorptionSidestream system control Preferential loading series arrangementSeries-series counterflow Series-Counterflow ApplicationEvaporators Unequal Chiller SizingCondensers Low ΔT Syndrome System Issues and ChallengesAmount of Fluid in the Loop Example System Issues and ChallengesChiller response to changing conditions System response to changing conditionsMinimum capacity required ContingencyType and size of chiller Ancillary equipment System Issues and Challenges Location of equipmentAlternative Energy Sources Water and electrical connectionsAlternative fuel Plant ExpansionThermal storage Applications Outside the Chiller’s Range Retrofit OpportunitiesFlow rate out of range Precise temperature control System Issues and Challenges Temperatures out of rangePrecise temperature control, multiple chillers Chilled-water pump control Chilled water reset-raising and loweringSystem Controls Chilled-Water System ControlSystem Controls Critical valve reset pump pressure optimizationNumber of chillers to operate Chillers Difference Condenser-Water System ControlMinimum refrigerant pressure differential VFDs and centrifugal chillers performance at 90% loadCooling-tower-fan control Condenser-water temperature controlChiller-tower energy consumption Chiller-tower energy balanceChiller-tower-pump balance System Controls Variable condenser water flowEffect of chiller load on water pumps and cooling tower fans Decoupled condenser-water systemCDWP-2 Failure recovery Failure RecoveryConclusion Glossary Pumps system GlossaryGlossary Plant. Idea 88th Annual Conference Proceedings 1997 ReferencesEngineering July References102 Ashrae IndexIndex 105 106 Page Trane