Electrostatic Protection

The following caution outlines important precautions which should be observed when working with static sensitive components in the power supply.

This instrument uses components which can be damaged by static charge. Most semiconductors can suffer serious performance degradation as a result of static charges, even though complete failure may not occur. The following precautions should be observed when handling static-sensitive devices.

a.Always turn power off before removing or installing printed-circuit boards.

b.Always stored or transport static-sensitive devices (all semiconductors and thin-film devices) in conductive material. Attach warning labels to the container or bag enclosing the device.

c.Handle static-sensitive devices only at static-free work stations. These work stations should include special conductive work surfaces (such as Agilent Part No. 9300-0797) grounded through a one-megohm resistor. Note that metal table tops and highly conductive carbon-impregnated plastic surfaces are too conductive; they can act as large capacitors and shunt charges too quickly. The work surfaces should have distributed resistance of between 106and 10l2 Ω per square.

d.Ground all conductive equipment or devices that may come in contact with static-sensitive devices or subassemblies containing same.

e.Where direct grounding of objects in the work area is impractical, a static neutralizer should be used (ionized air blower directed at work). Note that this method is considerably less effective than direct grounding and provides less protection for static-sensitive devices.

f.While working with equipment on which no point exceeds 500 volts, use a conductive wrist strap in contact with skin. The wrist strap should be connected to ground through a one-megohm resistor. A wrist strap with insulated cord and built-in resistor is recommended, such as 3M Co. No. 1066 (Agilent Part No. 9300-0969 (small) and 9300-0970 [large]).

Do not wear a conductive wrist strap when working with potentials in excess of 500 volts; the one-megohm resistor will provide insufficient current limiting for personal safety.

g.All grounding (device being repaired, test equipment, soldering iron, work surface, wrist strap, etc.) should be done to the same point.

h.Do not wear nylon clothing. Keep clothing of any kind from coming within 12 inches of static-sensitive devices.

i.Low-impedance test equipment (signal generators, logic pulsers, etc.) should be connected to static-sensitive inputs only while the components are powered.

j.Use a mildly activated rosin core solder (such as Alpha Metal Reliacor No. 1, Agilent Part No. 8090-0098) for repair. The flux residue of this type of solder can be left on the printed circuit board. Generally, it is safer not to clean the printed-circuit board after repair. Do not use Freon or other types of spray cleaners. If necessary, the printed-circuit board can be brushed using a natural-bristle brush only. Do not use nylon-bristle or other synthetic-bristle brushes. Do not use high-velocity air blowers (unless ionized).

k.Keep the work area free of non-conductive objects such as Styrofoam-type cups, polystyrene foam, polyethylene bags, and plastic wrappers. Non-conductive devices that are necessary in the area can be kept from building up a static charge by spraying them with an anti-static chemical (Agilent Part No. 8500-3397).

l.Do not allow long hair to come in contact with static-sensitive assemblies.

m.Do not exceed the maximum rated voltages specified for the device.

Repair and Replacement

Repair and replacement of most components in the power supply require only standard techniques that should be apparent to the technician. The following paragraphs provide instructions for removing certain assemblies and components for which the procedure may not be obvious upon inspection.

29

Page 29
Image 29
Agilent Technologies 6011A, 6010a, 6012B, 6015A service manual Electrostatic Protection, Repair and Replacement

6015A, 6012B, 6011A, 6010a specifications

Agilent Technologies, a leader in the field of measurement and analysis, offers a suite of instruments within its 6010 and 6011 series, specifically the 6010A, 6011A, 6012B, and 6015A models. These devices are designed to meet the needs of various industries, including healthcare, environmental monitoring, and materials testing.

The Agilent 6010A is a high-performance spectrometer known for its precision and versatility. It utilizes advanced optical technologies to provide exceptional wavelength accuracy and resolution. This model is particularly useful in laboratories where reliable data is critical, offering a wide spectral range and effective noise reduction features. Its user-friendly interface simplifies complex analyses, making it suitable for both seasoned professionals and newcomers.

Following closely, the Agilent 6011A is recognized for its robust capabilities in laboratory environments. This device incorporates advanced signal processing techniques, enabling high-throughput measurements without compromising on quality. The 6011A is ideal for real-time monitoring applications, ensuring that users can make informed decisions based on accurate, timely data. Its comprehensive software suite is designed to enhance data analysis, allowing for seamless integration with existing laboratory workflows.

The 6012B variant enhances the functionality further by introducing additional features tailored for specific applications. With a focus on flexibility, the 6012B supports multiple measurement modes, including direct and differential detection. This model excels in complex measurements, allowing for greater analytical depth and insights. The built-in calibration options ensure consistent performance, making it a reliable choice for various research and development tasks.

Lastly, the Agilent 6015A model stands out with its leading-edge technology, designed for the most demanding applications. It boasts enhanced sensitivity and an improved dynamic range, making it perfect for trace analysis in challenging environmental samples. The 6015A’s advanced reporting tools provide detailed analytics, helping scientists and researchers interpret results efficiently. Its compact design also makes it suitable for laboratory spaces with limited room, without sacrificing performance.

Together, these models showcase Agilent Technologies' commitment to delivering high-quality, innovative solutions that empower users to achieve their analytical goals effectively and efficiently. Whether in a research, clinical, or industrial setting, the 6010A, 6011A, 6012B, and 6015A continue to set standards in precision instrumentation.