VOLTAGE AND CURRENT PROGRAMMING WITH VARIABLES

You can use variables in a program to represent data values in the device commands. This is useful in applications that require changing the voltage and current values to different predetermined settings. The following program uses a variable in a FOR NEXT loop to ramp up output voltage in 0.1 volt steps from 0 to 5 volts.

10 ASSIGN @Ps TO 705

20 OUTPUT @Ps;"CLR;ISET1,0.5"

30 FOR Voltage=0 TO 5 STEP 0.1

40 OUTPUT @Ps;’’VSET1,";Voltage

50 WAIT 0.2

60 NEXT Voltage

70 END

Line 10: Assigns the l/O pathname to the power supply.

Line 20: Initializes the power supply to its power on state and sets the current limit.

Line 30,60: Increments the voltage in 0.1 V steps to 5 volts.

Line 40: Sets the voltage of output 1 to the value of the variable ’’Voltage’’. The comma inside the quotes is required because it separates numbers in the device command (the output channel number from the voltage value in this case). A space < SP > may also be used instead of the comma. The semicolon outside the quotes is used because it suppresses the <CR> < LF> that the computer would normally send to the power supply if a comma were used as a separator after a string item. Using a comma in this case would produce a syntax error in the power supply.

Line 50: Waits 0.2 seconds between steps.

Another way to use variables to represent data values in device commands is when using input statements to program the power supply. The following program uses input statements to program the voltage and current settings of output 1 and output 2.

10 ASSIGN @Ps TO 705

20 INPUT "ENTER A VOLTAGE FOR OUTPUT #1",V1

30 INPUT ’’ENTER A CURRENT LIMIT FOR OUTPUT #1",I1

40 INPUT "ENTER A VOLTAGE FOR OUTPUT #2",V2

50 INPUT "ENTER A CURRENT LIMIT FOR OUTPUT #2",I2

60 OUTPUT @Ps;"VSET1,";V1;";ISET1,’’;I1;’’;VSET2,";V2;";ISET2,’’;I2

70 END

Line 10: Assigns the I/O pathname to the power supply.

Line 20,30: Enters voltage and current values for output 1.

Line 40,50: Enters voltage and current values for output 2.

Line 60: Sets the voltage and current of outputs 1 and 2 to the values entered into the variables. The previous example explained the use of the comma inside the quotes and the semicolon that precedes the variable. The semicolon that follows the variable suppresses the comma that the computer would normally send to the power supply if a comma were used as a separator after a numeric item. The leading semicolons inside the quotes separate multiple device commands (the VSET commands from the ISET commands in this case).

Voltage and Current Readback

Reading back data from the power supply requires two statements. First, an output statement is used to query the power supply. A list of queries appears in Table 5-2 on page 70. The power supply responds to the query by entering the requested data into a buffer. Next, an enter statement is used to read the data from the buffer on the power supply into a variable in the computer. The following program queries the power supply for the voltage and current settings of output 1 and prints the results on the screen.

104Programming with a Series 200/300 Computer

Page 104
Image 104
Agilent Technologies 6626A, 6628A, 6625A, 6629A Voltage and Current Programming with Variables, Voltage and Current Readback

6629A, 6625A, 6626A, 6628A specifications

Agilent Technologies, a recognized leader in electronic test and measurement solutions, has developed a series of precision power supplies ideal for a variety of applications in both research and industry. The Agilent 6628A, 6626A, 6625A, and 6629A are part of the Agilent 6000 series and stand out due to their innovative technologies and robust functionalities.

The Agilent 6628A is a triple-output power supply, featuring two 0 to 20 V outputs capable of delivering up to 3 A each, along with a 5 V output that can supply 5 A. This combination is perfect for supplying power to devices that require multiple supply voltages simultaneously, making it an excellent choice for testing and development purposes.

The Agilent 6626A, on the other hand, offers dual output capabilities with higher specifications. Each of its outputs can be adjusted from 0 to 25 V and delivers up to 3 A, providing enhanced flexibility for designers and engineers working with various devices. Additionally, the 6626A's compact size and lightweight design make it easy to integrate into test setups without occupying excessive space.

For applications that require comprehensive monitoring, the Agilent 6625A provides a unique solution with its built-in digital voltmeter (DVM). This power supply comes with two 0 to 25 V outputs, both capable of 3 A. The integrated DVM allows real-time measurement and displays voltage and current values, ensuring accurate readings during experimentation and testing.

Lastly, the Agilent 6629A is designed for high-performance applications, providing up to four outputs, including two adjustable outputs that can be set between 0 to 35 V and deliver 5 A each. This model is particularly suited for environments where multiple devices need to be powered simultaneously with varying voltage requirements.

All four models come equipped with key features including ease of programming, precision regulation, and superior load transient response. They employ advanced technologies like low-noise operation and excellent line regulation, ensuring stable performance under varying load conditions. Additionally, safety features such as overvoltage protection, current limiting, and rapid recovery from overloads guarantee reliable operation.

In summary, Agilent's 6628A, 6626A, 6625A, and 6629A power supplies provide versatile, precise, and reliable solutions for all electronic testing needs. Their characteristics and dedicated functionalities make them indispensable tools for engineers, researchers, and developers across numerous fields. Whether it's for prototyping, testing, or production, these power supplies deliver the quality and performance that professionals expect from Agilent Technologies.