Table 5-1. Power Supply Commands (continued)

Command

Store present output state

Query preset status of output

Perform self test on GP-IB interface

Set bits in mask register

Query bits set in mask register

Program the voltage DAC in counts

Querys setting of voltage DAC in counts

Send data to calibrate the voltage circuits

Set output to high V calibration value

Set output to low V calibration value

Query inputs of analog multiplexer

Query measured value of an output

Calibrate the voltage readback circuitry

Set output to V readback high cal value

Set output to V readback low cal value

Set full scale voltage programming range

Query full scale voltage programming range

Set output voltage

Query setting of output voltage

Increase or decrease output voltage by value

Header

STO

STS?

TEST?

UNMASK

UNMASK?

VDAC

VDAC?

VDATA

VHI

VLO

VMUX?

VOUT?

VRDAT

VRHI

VRLO

VRSET

VRSET?

VSET

VSET?

VSTEP

Output

Channel

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

1 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

Data Range

(Fig. 5-2)

0-10

.

0-255

See Service Manual

See Table 5-4

See Table 5-4

See Table 5-4 V

1-18

See Table 5-4

See Table 5-4

See Table 5-4

See Table 5-4

See Table 5-4

See Table 5-4

See Table 5-4

See Table 5-4

See Table 5-4

Syntax

C2

Q2

C1

C4

Q2

C4

Q2

C5

C3

C3

C4

Q2

C5

C3

C3

C4

Q2

Q2

Q2

C4

Figure 5-2 shows the possible syntax forms for the device commands that are used to program the power supply. Syntax forms for the calibration commands that are discussed in Appendix A are also included. The oblong shape at the left of the syntax forms contains the command header which must be entered as shown in Tables 5-1 and 5-2. Commands are accepted in either uppercase or lowercase letters (ASCII characters). Circles contain characters that must be entered exactly as shown. Characters such as a space <SP> or a comma are used to separate elements in the command string. Characters such as a line feed < LF > or a semicolon are used to terminate the command string. Rectangles contain parameters that follow the command header lines and arrows indicate the correct paths through the syntax diagrams.

Numeric Data

The power supply will accept numeric data in implicit point, explicit point, or scientific notation. A general syntax diagram for numeric data is included in Figure 5-2. Implicit point notation means that numbers do not contain a decimal point; integers for example. Numbers written in explicit notation contain a decimal point, such as 12.35. In scientific notation, the letter E stands for "10 raised to". For example, 1.2E3 is read as 1.2 times 10 raised to the 3rd power, which equals 1,200. Plus and minus signs are considered numeric characters and are optional. If you program a number with an accuracy that is greater than the resolution of the supply, the number will automatically be rounded to the nearest multiple of the power supply’s resolution. Table 5-1 gives the ranges for numeric data that is sent to the supply.

The power supply will also return numeric data (ASCII characters) to your computer. The format of the numbers returned depends upon the type of data requested. Table 5-2 gives the format for data returned to the computer in response to any of the queries that are listed.

Remote Operation 67

Page 67
Image 67
Agilent Technologies 6629A, 6626A, 6628A, 6625A manual Output Channel Data Range, Syntax, Numeric Data

6629A, 6625A, 6626A, 6628A specifications

Agilent Technologies, a recognized leader in electronic test and measurement solutions, has developed a series of precision power supplies ideal for a variety of applications in both research and industry. The Agilent 6628A, 6626A, 6625A, and 6629A are part of the Agilent 6000 series and stand out due to their innovative technologies and robust functionalities.

The Agilent 6628A is a triple-output power supply, featuring two 0 to 20 V outputs capable of delivering up to 3 A each, along with a 5 V output that can supply 5 A. This combination is perfect for supplying power to devices that require multiple supply voltages simultaneously, making it an excellent choice for testing and development purposes.

The Agilent 6626A, on the other hand, offers dual output capabilities with higher specifications. Each of its outputs can be adjusted from 0 to 25 V and delivers up to 3 A, providing enhanced flexibility for designers and engineers working with various devices. Additionally, the 6626A's compact size and lightweight design make it easy to integrate into test setups without occupying excessive space.

For applications that require comprehensive monitoring, the Agilent 6625A provides a unique solution with its built-in digital voltmeter (DVM). This power supply comes with two 0 to 25 V outputs, both capable of 3 A. The integrated DVM allows real-time measurement and displays voltage and current values, ensuring accurate readings during experimentation and testing.

Lastly, the Agilent 6629A is designed for high-performance applications, providing up to four outputs, including two adjustable outputs that can be set between 0 to 35 V and deliver 5 A each. This model is particularly suited for environments where multiple devices need to be powered simultaneously with varying voltage requirements.

All four models come equipped with key features including ease of programming, precision regulation, and superior load transient response. They employ advanced technologies like low-noise operation and excellent line regulation, ensuring stable performance under varying load conditions. Additionally, safety features such as overvoltage protection, current limiting, and rapid recovery from overloads guarantee reliable operation.

In summary, Agilent's 6628A, 6626A, 6625A, and 6629A power supplies provide versatile, precise, and reliable solutions for all electronic testing needs. Their characteristics and dedicated functionalities make them indispensable tools for engineers, researchers, and developers across numerous fields. Whether it's for prototyping, testing, or production, these power supplies deliver the quality and performance that professionals expect from Agilent Technologies.