Connecting Supplies in Series

Floating voltages must not exceed ±240 Vdc. No output terminal may be more than 240 V from chassis ground.

Figure 4-3f shows how power supplies can be connected in series for higher voltage output.

Series connections are straightforward in this case. Program each power supply independently. If two supplies are used in the series configuration, program each supply for 50% of the total output voltage. Set the current limit of each supply to the maximum that the load can handle without damage.

Each power supply has a reverse voltage protection diode across its output. If a reverse voltage is applied, the supply cannot control the current conducted through this diode. To avoid damaging the supply, never connect it in such a way that a reverse voltage can force it to conduct current in excess of the supply's maximum reverse diode current (see Table 1-2).

 

Analog Connector

Load Connection

Load

A

Program each supply for full load current and 1/2 the load voltage

B Set switch for local or (optional) remote sensing

C

Connect for remote sensing (optional)

 

 

WARNING

FLOATING VOLTAGES MUST NOT EXCEED ±240 VDC. NO OUTPUT TERMINAL MAY

BE MORE THAN 240 V FROM CHASSIS GROUND

Figure 4-3f. Series 664xA and 665xA Series Connection (Remote Sensing Optional)

External Voltage Control

The setup shown in Figure 4-3g allows an external dc voltage to program the power supply output. A voltage applied to the voltage programming input programs the output voltage and a voltage applied to the current programming input programs the output current. See Figure 4-1 for an explanation of these programming input connections.

Wiring Considerations

The input impedance of the analog input is 10 kΩ. If the output impedance of your programming source is not negligible with this, programming errors will result. Larger output impedances result in proportionally greater errors.

Be careful of capacitive coupling from the programming inputs to other lines wired to the analog connector. Such coupling can cause output oscillations. You can minimize coupling by bundling the IP, VP, and Common P lines and keeping them separated from other wires. Twisting these three lines together is also recommended.

User Connections 67

Page 67
Image 67
Agilent Technologies 667xA, 665xA, 664xA Connecting Supplies in Series, External Voltage Control, Wiring Considerations

668xA, 669xA, 667xA, 664xA, 665xA specifications

Agilent Technologies has long been a pioneer in the production of high-performance electronic test and measurement instruments, particularly in the field of power sources. Among its notable offerings are the Agilent 667xA, 669xA, 665xA, 664xA, and 668xA series of power supplies. These instruments are designed to provide stable, reliable power for a variety of applications, including electronic testing, industrial processes, and research laboratories.

The Agilent 667xA series is characterized by its programmability and advanced measurement functions. These power supplies support a wide range of output voltages and currents, allowing for flexible configurations that cater to different testing needs. The built-in measurement capabilities enable users to monitor the voltage, current, and power with high precision, which is essential for ensuring optimal performance in electronic applications.

The Agilent 669xA series stands out with its high-power outputs, making it suitable for demanding applications. These power supplies deliver high voltage and current levels, making them ideal for testing high-performance devices, such as power amplifiers and motor drives. Additionally, the 669xA series includes features such as overvoltage protection and complex output sequencing to enhance the safety and reliability of the testing process.

The Agilent 665xA and 664xA series focus on delivering high accuracy and excellent regulation. These models are particularly known for their low noise operation, which is critical for sensitive applications where precision is paramount. The integrated programming capabilities allow users to automate testing sequences, thus improving efficiency in research and development settings.

The 668xA series features advanced digital signal processing that enhances the precision and stability of the output. Users benefit from features like remote sensing and monitoring, allowing feedback adjustments that maintain output accuracy despite cable losses. Furthermore, the 668xA models can integrate seamlessly with various test environments thanks to their LAN, GPIB, and USB connectivity options.

Overall, the Agilent 667xA, 669xA, 665xA, 664xA, and 668xA power supplies provide a comprehensive range of solutions for diverse electronic testing needs. With their advanced features, superb measurement capabilities, and robust performance, these instruments empower engineers and researchers to conduct their work with confidence, precision, and efficiency.