How is radiofrequency radiation measured?

RF waves and RF fields have both electrical and magnetic components. It is often convenient to express the strength of the RF field in terms of each component. For example, the unit "volts per meter" (V/m) is used to measure the electric field strength, and the unit "amperes per meter" (A/m) is used to express the magnetic field strength. Another common way to characterize an RF field is by means of the power density. Power density is defined as power per unit area. For example, power density can be expressed in terms of milliwatts (one thousandth of a watt) per square centimeter (mW/cm2 or microwatts (one millionth of a watt) per square centimeter (µW/cm2).

The quantity used to measure how much RF energy is actually absorbed by the body is called the Specific Absorption Rate or SAR. The SAR is a measure of the rate of absorption of RF energy. It is usually expressed in units of watts per kilogram (W/kg) or milliwatts per gram (mW/g).

What biological effects can be caused by RF energy?

The biological effects of radiofrequency energy should not be confused with the effects from other types of electromagnetic energy.

Very high levels of electromagnetic energy, such as is found in X-rays and gamma rays can ionize biological tissues. Ionization is a process where electrons are stripped away from their normal locations in atoms and molecules. It can permanently damage biological tissues including DNA, the genetic material. Ionization only occurs with very high levels of electromagnetic energy such as X-rays and gamma rays. Often the term radiation is used when discussing ionizing radiation (such as that associated with nuclear power plants).

The energy levels associated with radiofrequency energy, including both radio waves and microwaves, are not great enough to cause the ionization of atoms and molecules. Therefore, RF energy is a type of non-ionizing radiation. Other types of non-ionizing radiation include visible light, infrared radiation (heat) and other forms of electromagnetic radiation with relatively low frequencies.

Large amounts of RF energy can heat tissue. This can damage tissues and increase body temperatures. Two areas of the body, the eyes and the testes, are particularly vulnerable to RF heating because there is relatively little blood flow in them to carry away excess heat.

The amount of RF radiation routinely encountered by the general public is too low to produce significant heating or increased body temperature. Still, some people have questions about the possible health effects of low levels of RF energy. It is generally agreed that further research is needed to determine what effects actually occur and whether they are dangerous to people. In the meantime, standards-setting organizations and government agencies are continuing to monitor the latest scientific findings to determine whether changes in safety limits are needed to protect human health.

FDA, EPA and other US government agencies responsible for public health and safety have worked together and in connection with WHO to monitor developments and identify research needs related to RF biological effects.

Section 4A: Safety Guidelines

155

Page 164
Image 164
Audiovox PM8912 manual How is radiofrequency radiation measured?, What biological effects can be caused by RF energy?