Appendix: Glossary of Web-Based Management Terms

IMAP is the protocol that IMAP clients use to communicate with the servers, and SMTP is the protocol used to transport mail to an IMAP server.

The current version of the Internet Message Access Protocol is IMAP4. It is similar to Post Office Protocol version 3 (POP3), but offers additional and more complex features. For example, the IMAP4 protocol leaves your e-mail messages on the server rather than downloading them to your computer. If you wish to remove your messages from the server, you must use your mail client to generate local folders, copy messages to your local hard drive, and then delete and expunge the messages from the server.

IP: IP is an acronym for Internet Protocol. It is a protocol used for communicating data across an Internet network.

IP is a “best effort“ system, which means that no packet of information sent over is assured to reach its destination in the same condition it was sent. Each device connected to a Local Area Network (LAN) or Wide Area Network (WAN) is given an Internet Protocol address, and this IP address is used to identify the device uniquely among all other devices connected to the network.

The current version of the Internet protocol is IPv4, which has 32-bit Internet Protocol addresses allowing for in excess of four billion unique addresses. This number is reduced drastically by the practice of Webmasters taking addresses in large blocks, the bulk of which remain unused. There is a rather substantial movement to adopt a new version of the Internet Protocol, IPv6, which would have 128-bit Internet Protocol addresses. This number can be represented roughly by a three with thirty-nine zeroes after it. However, IPv4 is still the protocol of choice for most of the Internet.

IPMC: IPMC is an acronym for IP MultiCast.

IP Source Guard: IP Source Guard is a secure feature used to restrict IP traffic on DHCP snooping untrusted ports by filtering traffic based on the DHCP Snooping Table or manually configured IP Source Bindings. It helps prevent IP spoofing attacks when a host tries to spoof and use the IP address of another host.

LACP: LACP is an IEEE 802.3ad standard protocol. The Link Aggregation Control Protocol, allows bundling several physical ports together to form a single logical port.

LLC: The IEEE 802.2 Logical Link Control (LLC) protocol provides a link mechanism for upper layer protocols. It is the upper sub-layer of the Data Link Layer and provides multiplexing mechanisms that make it possible for several network protocols (IP, IPX) to coexist within a multipoint network. LLC header consists of 1-byte DSAP (Destination Service Access Point), 1-byte SSAP (Source Service Access Point), 1 or 2 bytes Control field followed by LLC information.

LLDP: LLDP is an IEEE 802.1ab standard protocol. The Link Layer Discovery Protocol (LLDP) specified in this standard allows stations attached to an IEEE 802 LAN to advertise, to other stations attached to the same IEEE 802 LAN, the major capabilities provided by the system incorporating that station, the management address or addresses of the entity or entities that provide management of those capabilities, and the identification of the station’s point of attachment to the IEEE 802 LAN required by that management entity or entities. The information distributed via this protocol is stored by its recipients in a standard Management Information Base (MIB), making it possible for the information to be accessed by a Network Management System (NMS) using a management protocol such as the Simple Network Management Protocol (SNMP).

LLDP-MED: LLDP-MED is an extension of IEEE 802.1ab and is defined by the telecommunication industry association (TIA-1057).

LOC: LOC is an acronym for Loss Of Connectivity and is detected by a MEP. It indicates lost connectivity in the network. Can be used as a switch criteria by EPS.

MAC Table: Switching of frames is based upon the DMAC address contained in the frame. The switch builds up a table that maps MAC addresses to switch ports for knowing which ports the frames should go to (based upon the DMAC address in the frame). This table contains both static and dynamic entries. The static entries are configured by the network administrator if the administrator wants to do a fixed mapping between the DMAC address and switch ports. The frames also contain a MAC address (SMAC address), which shows the MAC address of the equipment sending the frame. The SMAC address is used by the switch to automatically update the MAC table with these dynamic MAC addresses. Dynamic entries are removed from the MAC table if no frame with the corresponding SMAC address have been seen after a configurable age time.

MD5: MD5 is an acronym for Message-Digest algorithm 5. MD5 is a message digest algorithm, used cryptographic hash function with a 128-bit hash value. It was designed by Ron Rivest in 1991. MD5 is officially defined in RFC 1321 - The MD5 Message- Digest Algorithm.

Page 220

724-746-5500 blackbox.com

Page 220
Image 220
Black Box LPB2826A, LPB2810A, LPB2848A, PoE+ Gigabit Managed Switch Eco Appendix Glossary of Web-Based Management Terms

LPB2848A, LPB2826A, LPB2810A, PoE+ Gigabit Managed Switch Eco specifications

The Black Box PoE+ Gigabit Managed Switch series, including the models LPB2810A, LPB2826A, and LPB2848A, presents a robust solution for businesses looking to enhance their network efficiency and reliability. Designed to support the growing demand for Power over Ethernet (PoE) devices, these switches provide the perfect backbone for modern network infrastructures.

One of the most significant features of this series is its PoE+ capability, which allows it to deliver power and data over a single Ethernet cable. This functionality simplifies cabling and installation, making it easier to deploy PoE devices such as IP cameras, VoIP phones, and wireless access points. The LPB2810A offers 8 PoE+ ports, the LPB2826A ups the ante with 24 ports, and the LPB2848A provides a whopping 48 ports, each capable of delivering up to 30 watts of power per port.

The managed switch system ensures that users can customize and optimize their network performance. With advanced features such as VLAN support, Quality of Service (QoS), and link aggregation, organizations can effectively manage traffic, prioritize critical applications, and potentially enhance overall network security. Furthermore, these switches support Layer 2 and Layer 3 functionalities, which allows for greater flexibility when implementing routing policies.

Another critical aspect of the LPB series is its built-in security features. The switches come equipped with advanced security protocols, including IEEE 802.1X port-based access control, which enables network administrators to authenticate devices before granting access to the network. This significantly reduces the risk of unauthorized access and ensures data integrity across the connected devices.

The Black Box PoE+ Gigabit Managed Switches are designed with reliability and ease of use in mind. Their fanless design promotes silent operation, making them ideal for deployment in both office environments and data centers. Additionally, the switches offer a user-friendly web-based interface and CLI options for straightforward management and configuration, catering to both novice and seasoned network administrators.

In conclusion, the Black Box PoE+ Gigabit Managed Switch series, featuring models LPB2810A, LPB2826A, and LPB2848A, stands out with its power-efficient design, extensive port options, and advanced security measures. These switches are an excellent choice for organizations that require a dependable and scalable networking solution to support their growing Ethernet and PoE device needs.