1 Layer 2 Ethernet overview

Queuing features are described as follows:

RED—RED increases link utilization. When multiple inbound traffic streams are switched to the same outbound port, and some traffic streams send small frames while other traffic streams send large frames, link utilization will not be able to reach 100 percent. When RED is enabled, link utilization approaches 100 percent.

Classification—Setting user priority.

-Inbound frames are tagged with the user priority set for the inbound port. The tag is visible when examining the frames on the outbound port. By default, all frames are tagged to priority zero.

-Externally tagged Layer 2 frames—When the port is set to accept externally tagged Layer 2 frames, the user priority is set to the Layer 2 CoS of the inbound frames.

Queuing

-Input queuing—Input queuing optimizes the traffic flow in the following way. Suppose a CEE port has inbound traffic that is tagged with several priority values, and traffic from different priority settings is switched to different outbound ports. Some outbound ports are already congested with background traffic while others are uncongested. With input queuing, the traffic rate of the traffic streams switched to uncongested ports should remain high.

-Output queuing—Output queuing optimizes the traffic flow in the following way. Suppose that several ports carry inbound traffic with different priority settings. Traffic from all ports is switched to the same outbound port. If the inbound ports have different traffic rates, some outbound priority groups will be congested while others can remain uncongested. With output queuing, the traffic rate of the traffic streams that are uncongested should remain high.

-Multicast rate limit—A typical multicast rate limiting example is where several ports carry multicast inbound traffic that is tagged with several priority values. Traffic with different priority settings is switched to different outbound ports. The multicast rate limit is set so that the total multicast traffic rate on output ports is less than the specified set rate limit.

-Multicast input queuing—A typical multicast input queuing example is where several ports carry multicast inbound traffic that is tagged with several priority values. Traffic with different priority settings is switched to different outbound ports. Some outbound ports are already congested with background traffic while others are uncongested. The traffic rate of the traffic streams switched to the uncongested ports should remain high. All outbound ports should carry some multicast frames from all inbound ports. This enables multicast traffic distribution relative to the set threshold values.

-Multicast output queuing—A typical multicast output queuing example is where several ports carry multicast inbound traffic. Each port has a different priority setting. Traffic from all ports is switched to the same outbound port. If the inbound ports have varying traffic rates, some outbound priority groups will be congested while others remain uncongested. The traffic rate of the traffic streams that are uncongested remains high. The outbound ports should carry some multicast frames from all the inbound ports.

Scheduling—A typical example of scheduling policy (using SP0 and SP1 modes) is where ports 0 through 7 carry inbound traffic, each port has a unique priority level, port 0 has priority 0, port 1 has priority 1, and so on. All traffic is switched to the same outbound port. In SP0 mode, all ports have DWRR scheduling; therefore, the frames-per-second (FPS) on all ports should correspond to the DWRR settings. In SP1 mode, priority 7 traffic uses SP; therefore, priority 7 can achieve a higher FPS. Frames from input ports with the same priority level should be scheduled in a round robin manner to the output port.

6

Converged Enhanced Ethernet Administrator’s Guide

 

53-1002163-02

Page 28
Image 28
Brocade Communications Systems 53-1002163-02 manual Converged Enhanced Ethernet Administrator’s Guide