Operation with Advanced Microprocessor with Graphics Control

3.4.4Setup Custom Alarms

Selecting SETUP CUSTOM ALARMS will step to the following menu:

SETUP CUSTOM ALARM TEXT

CHANGE CUSTOM TEXT 1

CHANGE CUSTOM TEXT 2

CHANGE CUSTOM TEXT 3

CHANGE CUSTOM TEXT 4

The custom alarm messages can be selected from a list of standard messages or you can write your own messages. The message selected for any custom alarm can be changed at any time by selecting SETUP CUSTOM ALARM TEXT. A list of five standard messages (see list below) and four custom messages are available to choose from. To modify the custom messages press CHANGE CUSTOM TEXT 1 (2, 3 or 4). Each message can be up to 20 characters in length and can be any of the following characters (or a blank space):

ABCDEFGHIJKLMNOPQRSTUVWXYZ#%*-0123456789.

Standard Custom Alarm Messages

WATER UNDER FLOOR

SMOKE DETECTED

STANDBY GC PUMP ON

LOSS OF WATER FLOW

STANDBY UNIT ON

For more information concerning alarms, see 5.0 - Alarm Descriptions.

3.4.5View Water Detect Floor Plan (for Optional LTM1000/LT750)

When water is detected the alarm will sound and the WATER UNDER FLOOR alarm message will be displayed. To see where the water is in the room, select VIEW/SET ALARMS from the main menu, then VIEW WATER DETECT FLOOR PLAN. A tile will be highlighted and blinking to indicate the position of the detected water.

3.4.6Setup Water Detect Floor Plan

The selected (i.e., cursor) floor tile will be highlighted and blinking. The UP and DOWN arrow keys are used to position the cursor tile. The UP key will move the cursor tile up and then it wraps around to the bottom of the next column to the right. The DOWN arrow key moves the cursor down, then to the top of the next column to the left. The cursor will also wrap around from the right top tile to the left bottom tile and back.

There are three different types of tiles to be defined: the environmental unit, the LT750 and sensor cable tiles. To set up the cable layout, first move the cursor to the location of the environmental unit and press the ENTER key. A rectangular box will be drawn at that location. Then move the cursor to the location of the LT750 and press the ENTER key. A solid circle will be drawn on the display. No tile can have two definitions, so if the LT750 is physically directly under the unit it must be defined at least one tile away.

The sensor cable should not be defined one tile at a time. The only sensor cable tiles that need to be defined are the tiles where the cable is going to change direction, and the last tile. The display will automatically define any tiles between two consecutively defined sensor tiles to be sensor tiles.

The ENTER key is also used to undo tile definitions. If a tile is defined in the wrong place, position the cursor on that tile and press the ENTER key. It will undefine the tile under the cursor and move the cursor back to the last defined tile. The entire layout can be erased by successively pressing the ENTER key. When the last tile is defined, press the ESCape key to leave the setup screen.

For more information and detailed installation instructions, see 4.5.2 - Water Detection Display.

19

Page 27
Image 27
Liebert 3000 Setup Custom Alarms, View Water Detect Floor Plan for Optional LTM1000/LT750, Setup Water Detect Floor Plan

3000 specifications

The Liebert 3000 is a cutting-edge power protection solution designed to provide reliable and efficient backup power for critical applications. This uninterruptible power supply (UPS) system is engineered to safeguard sensitive electronic equipment from power disturbances, ensuring uninterrupted operations in data centers, telecommunications, and industrial environments.

One of the standout features of the Liebert 3000 is its high-efficiency design. With an efficiency rating of up to 94%, the system minimizes energy loss, resulting in lower operational costs and a reduced carbon footprint. This is particularly important in today's environmentally conscious climate, as organizations strive to meet sustainability goals while maintaining top-tier performance.

The Liebert 3000 employs advanced technologies to enhance its functionality. It incorporates online double-conversion technology, which provides a continuous supply of clean and regulated power. This technology ensures that connected loads receive stable voltage and frequency, shielding them from voltage spikes, sags, and outages. Additionally, the UPS offers features such as automatic battery testing, which helps ensure peak battery performance and reliability.

Another key characteristic of the Liebert 3000 is its modular design, allowing for flexible scalability. This means that organizations can easily expand the capacity of their UPS system as their power needs grow, without the need for extensive system overhauls. The modular architecture also facilitates simplified maintenance and reduces downtime, as individual modules can be serviced without interrupting power to the critical load.

The system is equipped with comprehensive monitoring and management capabilities. The Liebert 3000 provides real-time data on power usage, battery status, and system performance, enabling facility managers to make informed decisions and proactively address potential issues. The integration of remote management tools allows for seamless monitoring from anywhere, providing peace of mind for operators.

Overall, the Liebert 3000 combines high efficiency, advanced technology, and flexible design to deliver a robust power protection solution. Its reliability and performance make it a preferred choice for organizations seeking to protect their critical infrastructure while enhancing operational efficiency and sustainability. As businesses continue to rely on technology for their everyday operations, the Liebert 3000 stands out as a dependable safeguard against the uncertainties of power quality.