Operation with Advanced Microprocessor Controls

Analog Setup

For installation of analog sensors, see 4.5.1 - Connecting the Analog Sensors.

After selecting a compatible sensor and properly wiring it to the terminals, set up the control to mon- itor the sensor as follows:

Slope—The slope is a multiplier used to scale the input signal. The slope can be positive (rising) or negative (falling) and can range from 0 (resulting in a horizontal line) to ±999. The slope for a 0-5 volt input is per 1 volt input, for 0-10 volt input is per 2 volt input, and for 4-20 mA is per 4 mA input. For example, assuming an intercept of 0, for a 0-10 volt sensor input with a slope of 50, an input of 1 volt would be displayed as 25: 1x(50/2); 2 volts would be 50: 2x(50/2); 3 volts would be 75: 3x(50/2); etc.

Intercept—The intercept is an offset from point 0 corresponding to 0 volts or 0 mA input. The inter- cept can be positive or negative and can be a point from 0 to ±999.

Adding an intercept of 100 to the slope example above, 1 volt would be 125: 100 + (1x[50/2]); 2 volts

would be 150: 100 + (2x[50/2]); 3 volts would be 175: 100 + (3x[50/2]); etc.

NOTE

For a 4-20 mA input sensor, if the desired reading at 4 mA input is 0, then an intercept of -1 x slope would be required. For example, assuming a slope of 50, the formula would be ([-1 x 50] + 4 x [50/4]) = 0. The intercept is -50.

Text—You may enter a custom label for each analog input. The text label can be 20 characters in length including any of the following:

ABCDEFGHIJKLMNOPQRSTUVWXYZ#%*-0123456789, or space.

Set Status Display

The Status Display can be set to display the return air temperature and humidity SENSOR READ- INGS or the temperature and humidity control SETPOINTS through this selection. When SET- POINTS is selected, the status display indicates so by displaying “SETPTS.” If SENSOR READINGS is selected, the Status Display will show the return air sensor readings.

Calibrate Actuator

For systems that use a valve actuator for chilled water or GLYCOOL cooling, the actuator timing may be calibrated or adjusted. This is the time it takes for the valve to travel from full closed to full open. It is programmable from 0 to 255 seconds. The factory default time is 165 seconds and should not be changed unless the actual valve travel time is not correct. The full valve travel time is used by the control to determine the appropriate valve position. For example, if the valve travel time is 165 sec- onds and 50% cooling is being called for, the valve will open for 83 seconds to acheive 50% open. To change the valve travel time, first enter the “CALIBRATE ACTUATOR” screen. The display will show the present period used by the control for valve actuator full travel. Press ENTER and adjust the time using the UP/DOWN arrows. When the correct time is displayed, press ENTER to store the new time to memory.

11

Page 19
Image 19
Liebert 3000 manual Analog Setup, Set Status Display, Calibrate Actuator

3000 specifications

The Liebert 3000 is a cutting-edge power protection solution designed to provide reliable and efficient backup power for critical applications. This uninterruptible power supply (UPS) system is engineered to safeguard sensitive electronic equipment from power disturbances, ensuring uninterrupted operations in data centers, telecommunications, and industrial environments.

One of the standout features of the Liebert 3000 is its high-efficiency design. With an efficiency rating of up to 94%, the system minimizes energy loss, resulting in lower operational costs and a reduced carbon footprint. This is particularly important in today's environmentally conscious climate, as organizations strive to meet sustainability goals while maintaining top-tier performance.

The Liebert 3000 employs advanced technologies to enhance its functionality. It incorporates online double-conversion technology, which provides a continuous supply of clean and regulated power. This technology ensures that connected loads receive stable voltage and frequency, shielding them from voltage spikes, sags, and outages. Additionally, the UPS offers features such as automatic battery testing, which helps ensure peak battery performance and reliability.

Another key characteristic of the Liebert 3000 is its modular design, allowing for flexible scalability. This means that organizations can easily expand the capacity of their UPS system as their power needs grow, without the need for extensive system overhauls. The modular architecture also facilitates simplified maintenance and reduces downtime, as individual modules can be serviced without interrupting power to the critical load.

The system is equipped with comprehensive monitoring and management capabilities. The Liebert 3000 provides real-time data on power usage, battery status, and system performance, enabling facility managers to make informed decisions and proactively address potential issues. The integration of remote management tools allows for seamless monitoring from anywhere, providing peace of mind for operators.

Overall, the Liebert 3000 combines high efficiency, advanced technology, and flexible design to deliver a robust power protection solution. Its reliability and performance make it a preferred choice for organizations seeking to protect their critical infrastructure while enhancing operational efficiency and sustainability. As businesses continue to rely on technology for their everyday operations, the Liebert 3000 stands out as a dependable safeguard against the uncertainties of power quality.