Operation with Advanced Microprocessor with Graphics Control

3.11Analog/Digital Inputs

Selecting ANALOG/DIGITAL INPUTS steps to the following menu:

READ ANALOG INPUTS

SETUP ANALOG INPUTS

READ DIGITAL INPUTS

SETUP DIGITAL INPUTS

3.11.1Read Analog Inputs

The four (4) analog sensor inputs can be monitored from the display. The inputs are filtered, then dis- played along with the text label assigned during setup.

3.11.2Setup Analog Inputs

For installation of analog sensors, see Analog Setup on page 11.

After selecting a compatible sensor and properly wiring it to the terminals, set the control to monitor the sensor according to the following instructions.

Slope

The slope is a multiplier used to scale the input signal. The slope can be positive (rising) or negative (falling) and can range from 0 (resulting in a horizontal line) to ±999. The slope for a 0-5 volt input is per 1 volt input; for 0-10 volt input, it is per 2 volt input; and for 4-20 mA, it is per 4 mA input. For example, assuming an intercept of 0, for a 0-10 volt sensor input with a slope of 50, an input of 1 volt would be displayed as 25: 1x(50/2); 2 volts would be 50: 2x(50/2); 3 volts would be 75: 3x(50/2); etc.

Intercept

The intercept is an offset from point 0 corresponding to 0 volts or 0 mA input. The intercept can be positive or negative and can be a point from 0 to ±999. Adding an intercept of 100 to the slope example above, 1 volt would be 125: 100 + (1x[50/2]); 2 volts would be 150: 100 + (2x[50/2]); 3 volts would be 175: 100 + (3x[50/2]); etc.

NOTE

For a 4-20 mA input sensor, if the desired reading at 4 mA input is 0, then an intercept of -1 x slope would be required. For example, assuming a slope of 50, the formula would be ([-1 x 50] + 4 x [50/4]) = 0. The intercept is -50.

Text

You may enter a custom label for each analog input. The text label can be 20 characters in length including any of the following:

ABCDEFGHIJKLMNOPQRSTUVWXYZ#%*-0123456789, or space.

3.11.3Read Digital Inputs

The four custom alarm inputs can be defined to be digital inputs. Digital inputs are used to sense cus- tomer devices for status display purposes only and will not activate the audible alarm.

3.11.4Setup Digital Inputs

A digital input is enabled by defining one of the four custom alarms to be STATUS ONLY type in the alarm setup screen. The digital input is given a name by specifying it to be one of the optional alarms or a custom text alarm. See 3.4.3 - Setup Alarms and 3.4.4 - Setup Custom Alarms.

3.12View Run Hours Log

Selecting VIEW RUN HOURS LOG will step to the following menu:

VIEW 24 HOUR RUN TIME HISTORY

VIEW TOTAL RUN HOURS

26

Page 34
Image 34
Liebert 3000 manual Analog/Digital Inputs, View Run Hours Log

3000 specifications

The Liebert 3000 is a cutting-edge power protection solution designed to provide reliable and efficient backup power for critical applications. This uninterruptible power supply (UPS) system is engineered to safeguard sensitive electronic equipment from power disturbances, ensuring uninterrupted operations in data centers, telecommunications, and industrial environments.

One of the standout features of the Liebert 3000 is its high-efficiency design. With an efficiency rating of up to 94%, the system minimizes energy loss, resulting in lower operational costs and a reduced carbon footprint. This is particularly important in today's environmentally conscious climate, as organizations strive to meet sustainability goals while maintaining top-tier performance.

The Liebert 3000 employs advanced technologies to enhance its functionality. It incorporates online double-conversion technology, which provides a continuous supply of clean and regulated power. This technology ensures that connected loads receive stable voltage and frequency, shielding them from voltage spikes, sags, and outages. Additionally, the UPS offers features such as automatic battery testing, which helps ensure peak battery performance and reliability.

Another key characteristic of the Liebert 3000 is its modular design, allowing for flexible scalability. This means that organizations can easily expand the capacity of their UPS system as their power needs grow, without the need for extensive system overhauls. The modular architecture also facilitates simplified maintenance and reduces downtime, as individual modules can be serviced without interrupting power to the critical load.

The system is equipped with comprehensive monitoring and management capabilities. The Liebert 3000 provides real-time data on power usage, battery status, and system performance, enabling facility managers to make informed decisions and proactively address potential issues. The integration of remote management tools allows for seamless monitoring from anywhere, providing peace of mind for operators.

Overall, the Liebert 3000 combines high efficiency, advanced technology, and flexible design to deliver a robust power protection solution. Its reliability and performance make it a preferred choice for organizations seeking to protect their critical infrastructure while enhancing operational efficiency and sustainability. As businesses continue to rely on technology for their everyday operations, the Liebert 3000 stands out as a dependable safeguard against the uncertainties of power quality.