Lincoln Electric R3R-300, R3R-500 service manual Safety, California Proposition 65 Warnings

Page 2

Return to Master TOC

TOC

i

i

SAFETY

WARNING

CALIFORNIA PROPOSITION 65 WARNINGS

Diesel engine exhaust and some of its constituents

 

The engine exhaust from this product contains

are known to the State of California to cause can-

 

chemicals known to the State of California to cause

cer, birth defects, and other reproductive harm.

 

cancer, birth defects, or other reproductive harm.

 

 

 

The Above For Diesel Engines

 

The Above For Gasoline Engines

ARC WELDING CAN BE HAZARDOUS. PROTECT YOURSELF AND OTHERS FROM POSSIBLE SERIOUS INJURY OR DEATH. KEEP CHILDREN AWAY. PACEMAKER WEARERS SHOULD CONSULT WITH THEIR DOCTOR BEFORE OPERATING.

Read and understand the following safety highlights. For additional safety information, it is strongly recommended that you purchase a copy of “Safety in Welding & Cutting - ANSI Standard Z49.1” from the American Welding Society, P.O. Box 351040, Miami, Florida 33135 or CSA Standard W117.2-1974. A Free copy of “Arc Welding Safety” booklet E205 is available from the Lincoln Electric Company, 22801 St. Clair Avenue, Cleveland, Ohio 44117-1199.

BE SURE THAT ALL INSTALLATION, OPERATION, MAINTENANCE AND REPAIR PROCEDURES ARE PERFORMED ONLY BY QUALIFIED INDIVIDUALS.

Return to Master

Return to Master TOC

Return to Master TOC

FOR ENGINE powered equipment.

1.a. Turn the engine off before troubleshooting and maintenance work unless the maintenance work requires it to be running.

____________________________________________________

1.b.Operate engines in open, well-ventilated areas or vent the engine exhaust fumes

outdoors.

____________________________________________________

1.c. Do not add the fuel near an open flame weld- ing arc or when the engine is running. Stop the engine and allow it to cool before refuel- ing to prevent spilled fuel from vaporizing on contact with hot engine parts and igniting. Do not spill fuel when filling tank. If fuel is spilled, wipe it up and do not start engine until fumes

have been eliminated.

____________________________________________________

1.d. Keep all equipment safety guards, covers and devices in position and in good repair.Keep hands, hair, clothing and tools away from V-belts, gears, fans and all other moving parts when starting, operating or

repairing equipment.

____________________________________________________

1.e. In some cases it may be necessary to remove safety guards to perform required maintenance. Remove guards only when necessary and replace them when the maintenance requiring their removal is complete. Always use the greatest care when working near moving parts.

___________________________________________________

1.f. Do not put your hands near the engine fan. Do not attempt to override the governor or idler by pushing on the throttle con- trol rods while the engine is running.

___________________________________________________

1.g. To prevent accidentally starting gasoline engines while turning the engine or welding generator during maintenance work, disconnect the spark plug wires, distributor cap or magneto wire as appropriate.

1.h. To avoid scalding, do not remove the radiator pressure cap when the engine is hot.

ELECTRIC AND MAGNETIC FIELDS may be dangerous

2.a. Electric current flowing through any conductor causes localized Electric and Magnetic Fields (EMF). Welding current creates EMF fields around welding cables and welding machines

2.b. EMF fields may interfere with some pacemakers, and welders having a pacemaker should consult their physician before welding.

2.c. Exposure to EMF fields in welding may have other health effects which are now not known.

2.d. All welders should use the following procedures in order to minimize exposure to EMF fields from the welding circuit:

2.d.1. Route the electrode and work cables together - Secure them with tape when possible.

2.d.2. Never coil the electrode lead around your body.

2.d.3. Do not place your body between the electrode and work cables. If the electrode cable is on your right side, the work cable should also be on your right side.

2.d.4. Connect the work cable to the workpiece as close as possible to the area being welded.

2.d.5. Do not work next to welding power source.

IDEALARC R3R

Image 2
Contents Idealarc R3R-300, -400 Safety California Proposition 65 WarningsElectric Shock can kill Cylinder may explode if damaged Précautions DE Sûreté Master Table of Contents for ALL Sections Table of Contents Installation Section Installation Technical Specifications Idealarc R3R-300Technical Specifications Idealarc R3R-400 Technical Specifications Idealarc R3R-500 Lifting Safety PrecautionsSelect Suitable Location TiltingInput Supply Connections Input ConnectionsGround Connection Input Wire and Fuse Size Figure A.2 Input Power Supply ConnectionsReconnect Procedure Input Supply Connection DiagramOutput Connections STICK, TIG, AIR/CARBON ARC Cutting Return to SectionIdealarc R3R Table of Contents Operation Section Operating Instructions Safety InstructionsOPERATIONB-2 General Description Design Features and AdvantagesOperation Recommended ProcessesControls and Settings Figure B.1 Case Front ControlsOperation Welding Operation Operating StepsTable of Contents Accessories Section Factory Installed Options AccessoriesOPTIONS/ACCESSORIES Field Installed OptionsTable of Contents Maintenance Section Maintenance Routine and Periodic MaintenanceFigure D.1 General Component Locations Idealarc R3R Table of Contents Theory of Operation Section Theory of Operation Input Line Voltage Contactor and Main TransformerOutput Rectification CONTROL, and Feedback Figure E.3 Output RECTIFICATION, CONTROL, and FeedbackOptional Polarity Switch and Pocket Amptrol Circuits Protective Devices and Circuits SCR Operation Figure E.5 SCR OperationTable of Contents Troubleshooting & Repair Section Troubleshooting & Repair HOW to USE Troubleshooting GuidePC Board Troubleshooting Procedures PC Board can be damaged by static electricityTroubleshooting Guide Output ProblemsSCR/Diode Pocket Amptrol Circuit Input Contactor Output Problems Welding Problems Description Materials NeededTest Procedure Input Contactor TestRemoved Test for Contact Continuity Description Figure F.3 DC Coil Input Contactor Connections Removed Control Transformer T2 Voltage Test Control Transformer T2 Voltage Test Figure F.5 Control Transformer and Lead LocationsTroubleshooting & Repair Main Transformer T1 Voltage Test Main Transformer T1 Voltage Test Figure F.8 Main Secondary Lead Test Points Phase Angle Winding Test Table F.1Figure F.9 Control Board G2206 Test Points Static SCR/DIODE Rectifier Bridge Test Static SCR/DIODE Rectifier Bridge Test Static SCR/DIODE Rectifier Bridge Test Figure F.13 Snubber Board M15370 Plug P5 LocationSCR Test Active SCR Test Active SCR Test Active SCR Test Figure F.20 SCR Tester Circuit and SCR ConnectionsPocket Amptrol Circuit Test Pocket Amptrol Circuit Test Figure F.21 T3 Transformer and Leads Pocket AmptrolFigure F.22 Pocket Amptrol Board Plug P6 and P7 Location Figure F.23 Sensing Resistor R4 Normal Open Circuit Voltage Waveform Maximum Output Setting no LoadScope Settings Typical Output Voltage Waveform Machine Loaded Typical SCR Gate Voltage Waveform CH1Abnormal Output Voltage Waveform ONE Output SCR not FunctioningInput Contactor CR1 CLEANING/REPLACEMENT Contactor Replacement Procedure Input Contactor CR1 CLEANING/REPLACEMENTCleaning Procedure FAN Motor and Blade Removal and Replacement FAN Motor and Blade Removal and Replacement ProcedureSCR/DIODE Rectifier Assembly Removal and Replacement SCR/DIODE Rectificer Assembly Removal and ReplacementTroubleshooting ReassemblySCR Removal and Replacement SCR Removal and Replacement Special InstructionsProcedure for the 1/2 Inch Wide Spring Figure F.29 1/2 Wide Leaf SpringClamping Procedure For 1/4-28 CAP Screws Clamping Procedure For 1/4-20 CAP ScrewsProcedure for Inch Wide SpringAfter Replacing the SCRs Mounting of Stud Type Diodes to Aluminum Heat Sinks Mounting of Stud Type Diodes to Aluminum Heat SinksMain Transformer Removal and Replacement Main Transformer Removal & Replacement Removal of Lift BailRemoval of Choke and TOP Iron Assembly Figure F.34 Choke RemovalReassembly of Transformer Coils Figure F.35 Epoxy MIX Application AreasFigure F.36 Coil Lead Placement Figure F.38 Secondary Lead Trim and Weld Detail Reassembling the Main Transformer Into the Machine Reassemble the Lift BailOpen Circuit Voltages Retest After Repair R3RInput Idle Amps and Watts Welding Output Load TestWelding Output Terminals 63/69VDC 61/66VDC Welding Output Terminals 64/72VDC 61/69VDC Idealarc R3R Electrical Diagrams Idealarc R3R Electrical Diagrams DIAGRAMSELECTRICALG-4 Idealarc R3R-400, 500-I, 500 & 600-I Wiring Diagram Pocket Amptrol Schematic Snubber Board Schematic & Layout R3R-300 Control PC Board R3R-400 Control PC Board R3R-500 Control PC Board