Fujitsu MB91401 manual Electrical Characteristics, Parameter Symbol Rating Unit, Min, Σiol, Σioh

Page 47

Prelminary

MB91401

2004.11.12

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter

Symbol

Rating

Unit

Remarks

 

 

Min

Max

 

 

 

 

 

 

 

 

 

 

 

 

 

Power supply

 

I/O

VDDE

VSS − 0.3

VSS + 4.0

V

 

voltage*1

 

Internal

VDDI

VSS − 0.3

VSS + 2.5

V

 

 

 

 

 

 

 

 

Analog power supply voltage

PLLVDD

VSS − 0.3

VSS + 4.0

V

*2

 

 

 

 

 

 

 

Input voltage*1

 

VI

VSS − 0.3

VDDE + 0.3

V

 

Output voltage*1

 

VO

VSS − 0.3

VDDE + 0.3

V

 

“L” level maximum output current

I OL

T.B.D

mA

*3

 

 

 

 

 

 

“L” level average output current

I OLAV

T.B.D

mA

*4

 

 

 

 

 

 

“L” level total maximum output current

ΣIOL

T.B.D

mA

 

 

 

 

 

 

 

“L” level total average output cur rent

ΣIOLAV

T.B.D

mA

*5

 

 

 

 

 

 

“H” level maximum output current

I OH

T.B.D

mA

*3

 

 

 

 

 

 

“H” level average output current

I OHAV

T.B.D

mA

*4

 

 

 

 

 

 

“H” level total maximum output current

ΣIOH

T.B.D

mA

 

 

 

 

 

 

 

“H” level total average output cur rent

ΣIOHAV

T.B.D

mA

*5

 

 

 

 

 

 

 

Power consumption

 

PD

T.B.D

mW

 

 

 

 

 

 

 

 

Operating temperature

 

Ta

− 10

70

°C

 

 

 

 

 

 

 

 

Storage temperature

 

Tstg

− 55

150

°C

 

 

 

 

 

 

 

 

 

*1 : This parameter is based on VSS = PLLVSS = 0 V.

*2 : Note that analog power supply voltage and input voltage do not exceed VDDE + 0.3 V at power on.

*3 : The maximum output current is the peak value for a single pin.

*4 : The average output current is the average current for a single pin over a period of 100 ms.

*5 : The total average output current is the average current for all pins over a period of 100 ms.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

Notes : • Apply equal potential to all of the VDDE pins.

Apply equal potential to all of the VDDI pins.

Fix all of the VSS pins at 0 V.

Leave N.C. pins open.

47

Image 47
Contents Package FeaturesDescription USB Function Controller Packet filtering functionGeneral Purpose IO Gpio Memory InterfaceI2C Interface Card Interface CompactFlashIndex E F G H J K L M N P R T U V W PIN AssignmentPIN Number Table GND PIN DescriptionFunction/application Pin name Pin noICS0 BreakiICS2 ICS1 OUTSOUT0 SIN1SIN0 SOUT1MB91401 Rxcrs RxclkRxer RxdvEXD14 ExcsxEXA EXD15UCLK48 UDPUDM UsbinsCFD8 CFD15 CFD14 CFD13 CFD12CFD11 CFD10 CFD9MB91401 Pllvss SDASCL PllvddUSB I/O Circuit TypeType Circuit Remarks Circuit Remarks Preventing Latch-up Separation of power supply patternHandling Devices About power supply pins Treatment of the unused pinsTreatment of Open pins Treatment of output pinsAttached cable Part number Remarks Connected Specification of MB91401 and ICEUV CC Signal line name Wiring regulationsEvaluation MCU terminal name Pin treatment RSTCircuit constants Description Pin name FunctionOsceb Holding request withdrawal demand function OFF Bit data busOperation at start-up Treatment of Unused Input PinsAbout Mode pins MDI2 to MDI0 About watch dog timerORB AndhAndb ORHDMA Interrupt handler to NMI request tool Trace modeStep execution of Reti instruction Operand breakAuthentication macro Block DiagramMemory Space General Purpose Registers Register Mode SettingsMode Pins Mode Register ModrFunction Remarks Bit1, bit0 WTH1, WTH0 Bus width setting bitsOperation mode Address Register Block MAPUART0 DRCL0 W UTIMC0 R/W TIMER0DRCL1 W UTIMC1 R/W TIMER1 SIDR0 R/WBsdc Ichrc R/WBSD0 Xxxxxxxx BSD1 XxxxxxxxAddress Register Block DMADA1 Xxxxxxxx DMASA0 XxxxxxxxDMADA0 Xxxxxxxx DMASA1 Xxxxxxxx010FFFFF H Bsrr BCRR/W CCRR/W ADRR/W1XXXXXXX DARR/W BC2RR/W Xxxxxxxx00XXXXXX SIM if Smistatusr SIM if Xxxxxxxx SmiintenableSMICMDR/W SmicmdstExiftxrw Exifrxdr RExiftxdr W ExifrxrrCONT1R/W XXXXX0XX-XXX00000 XXXXXXXX-XXXXXXXXFIFO1R FIFO2W XXXXXXXX-XXXXXXXX FIFO3W XXXXXXXX-XXXXXXXXXXXXXXXX-X0000000 XXXXXXXX-XXX00000 Interrupt Address of TBR Interrupt source Offset Interrupt VectorDefault NMI Non Maskable Interrupt Interrupt Address of TBR Interrupt source OffsetΣiol Electrical CharacteristicsParameter Symbol Rating Unit MinTyp Parameter Symbol Value UnitTCK/TRST/TMS TDI/TDO CfresetParameter Pin Conditions Value Unit Min TypPin Conditions Value Unit Input Levels High driven Vcrs standard range Mclko VDDE/2Usbc Unit Remarks Min Reset ParameterPin Conditions RDX Mclko ↑ Mclko ↑RDY Mclko ↑ Sclk ↑ SCK1, SCK0SOUT1, SOUT0 SIN1, SIN0Internal shift clock mode Rxer Rxclk ↑ Txen Txclk ↑Rxdv Rxclk ↑ Reception OUT → Mdio Mdclk ↑External if Parameter Symbol Pin Value Unit Remarks MinWrite access UDP, UDM USB interface Parameter Symbol PinFull-speed Buffer SDA Pclk 10 I2C interfacePclk SCL PclkCFOEX, Cfiordx Card ifCFCE2X, CFCE1X CDWEX, Cfiowrx Parameter SymbolValue Unit Remarks Min Max CFWEX, CfiowrxPart number Package Remarks Ordering InformationPackage Dimension Memo Asia Pacific JapanNorth and South America Europe

MB91401 specifications

The Fujitsu MB91401 microcontroller is a versatile device designed for automotive applications, embedded systems, and industrial control. It belongs to the MB91400 series, known for its robustness and efficiency. This series integrates advanced features and technologies that cater to a wide variety of real-time applications.

One of the standout features of the MB91401 is its 32-bit RISC architecture, which operates at clock speeds up to 40 MHz. This high-performance core enables rapid processing and data handling, making it suitable for demanding applications. The microcontroller is equipped with a generous amount of Flash memory, allowing developers to store essential firmware and applications directly on the chip, enhancing reliability and reducing design complexity.

Another key characteristic is its extensive memory configuration, which includes SRAM for data storage and EEPROM for non-volatile data retention. This combination provides flexibility for developers, enabling them to tailor the memory allocation based on specific application requirements.

The MB91401 is designed with a focus on peripheral integration. It features multiple I/O ports, timer units, and A/D converters, making it an ideal choice for applications that require precise timing and analog signal processing. The analog-to-digital converters offer high resolution and fast conversion speeds, which are critical in automotive and industrial control systems where accuracy is paramount.

Safety is a critical consideration in automotive applications, and the MB91401 addresses this with built-in diagnostic features and error detection capabilities. These features help ensure that the application remains functional and safe under various operating conditions.

In terms of connectivity, the microcontroller supports various communication protocols, including CAN, UART, and SPI, facilitating seamless integration with other systems and devices. This is particularly important in automotive applications where communication between different electronic control units (ECUs) is essential for overall system functionality.

The Fujitsu MB91401 is also designed for low power consumption, making it suitable for battery-operated devices and energy-sensitive applications. Its various power-saving modes allow developers to optimize the system's performance while extending operational life.

In summary, the Fujitsu MB91401 is a powerful and flexible microcontroller that combines high-performance processing with extensive peripheral support and safety features. Its robust architecture and energy-efficient design make it an excellent choice for a wide range of automotive and industrial applications, promoting both reliability and innovation in embedded system development.