Trane RAUC-C25, RAUC-C50, RAUC-C30, RAUC-C60 Ground Wire, W7100G Discharge Chilled Water Controller

Page 59

Installation

connection diagram illustrated in Figure 29 for the interconnecting points between the remote panel and the unit’s control panel.

WARNING

Ground Wire!

All field-installed wiring must be completed by qualified personnel. All field-installed wiring must comply with NEC and applicable local codes. Failure to follow this instruction could result in death or serious injuries.

WARNING

Grounding Required!

Follow proper local and state electrical code on requirements for grounding. Failure to follow code could result in death or serious injury.

A ground wire must be installed between the EVP remote panel and the unit control panel.

W7100G Discharge Chilled Water Controller

The discharge chilled water controller (6U11) is shipped from the factory with a combination wire/ resistor type jumper installed across Terminals 6, 7, & 8. The resistive portion of the jumper is across Terminals 7 & 8, which set the number of operating stages, of the control.

As shipped, a 200 ohm resistive jumper is installed across Terminals 7 & 8 on the controller. The 200 ohm resistive jumper is required for two (2) stage operation on 20 through 30 Ton units. If the unit is a 20, 25, or 30 Ton unit, locate the bag that is secured to the controller, and discard it.

WARNING

Hazardous Voltage!

Disconnect all electric power, including remote disconnects before servicing. Follow proper lockout/tagout procedures to ensure the power can not be inadvertently energized. Failure to disconnect power before servicing could result in death or serious injury.

For 40 through 60 Ton units, requiring four (4) stages of operation, a 402 ohm resistive jumper must be installed across Terminals 7 & 8 on the controller. Remove the combination wire/resistor jumper containing the 200 ohm resistor from Terminals 6, 7, & 8. Locate the bag that is secured to the controller, and install the 402 ohm combination jumper across Terminals 6, 7, & 8 on the controller. Refer to the remote panel illustration for the terminal identification.

Note: The resistor portion of the combination jumper must be installed across Terminals 7 & 8 on the controller.

The descriptions of the following input devices are to acquaint the operator with their function as they interface with the Honeywell W7100G controller.

Note: All wiring must comply with local and national electrical codes (NEC).

SS-SVX09A-EN

59

Image 59
Contents June Remote Split System UnitsOverview of Manual Grounding RequiredEnvironmental Concerns Responsible Refrigerant PracticesTable of Contents SS-SVX09A-EN Compressor Nameplate Model Number DescriptionUnit Nameplate Unit Description EVP Chiller Considerations Unit InspectionNo Step Surface Unit ClearancesFoundation Unit Dimensions & Weight InformationInstallation Installation RAUC-C20 Unit Dimensional Data & Recommended Clearances RAUC-C25 Unit Dimensional Data & Recommended Clearances RAUC-C30 Unit Dimensional Data & Recommended Clearances RAUC-C40 Unit Dimensional Data & Recommended Clearances RAUC-C50 Unit Dimensional Data & Recommended Clearances RAUC-C60 Unit Dimensional Data & Recommended Clearances Bphe 20 Evaporator Chiller Dimensions Bphe 25 Evaporator Chiller Dimensions Bphe 30 Evaporator Chiller Dimensions Bphe 40 Evaporator Chiller Dimensions Bphe 50 Evaporator Chiller Dimensions Bphe 60 Evaporator Chiller Dimensions Typical EVP Chiller Weights & General Data Typical Unit Weights & Point Loading DataRigging and Center-of-Gravity Data Rigging Heavy ObjectsTypical Neoprene Isolator Selection & Location Unit IsolationNeoprene Isolators Leveling the Unit Installation Spring IsolatorsTypical Spring Isolator Selection & Location Shipping FastenersCompressor Shipping Hardware Two Manifolded CompressorsRefrigerant Piping Requirements General Unit RequirementsEVP Chilled Water Piping Requirements Main Electrical Power Requirements Hazardous VoltageHazard of Explosion No Controls Units Ground WireField Installed Control Wiring Requirements Volt Control Wiring All UnitsEVP Chiller Piping Refrigerant Line Components Low Voltage Wiring AC & DC Hazardous VoltageVariable Air Volume VAV Units Constant Volume UnitsThermostatic Expansion Valve TEV Liquid Line Moisture Indicator Sight GlassAccess Valves Ports Liquid Line Solenoid ValvesTypical Placement of Split System piping Components Solenoid Valve & Sight Glass w/Moisture IndicatorUse Type L refrigerant grade copper tubing only Suction Line Interconnecting TubingRefrigerant Piping Suction Line PipingLiquid Line Piping Liquid Line Interconnecting TubingTypical Coil Piping For Dual Circuit Units Evaporator PipingFinal Refrigerant Pipe Connections Hot Gas Bypass for Commercial Comfort-Cooling ApplicationsOptional Pressure Gauges Brazing Procedures Hazard of Explosion and Deadly Gases Leak Testing Procedure Hazard of Explosion Chilled Water Piping Evaporator Water-Pressure Drop Water Pressure Gauges Installation Air VentsChiller Flow Switch Water Temperature SensorTypical Piping Recommendations FreezestatFinal Water Piping Connections Optional Flow Switch IllustrationDisconnect Switch External Handle Factory Mounted Option Field Installed Power WiringMain Unit Power Wiring Hazardous Voltage Calculation #1 MCA, MOP, and RDE Power Wire Sizing and Protection DeviceCustomer Connection Wire Range EquationsElectrical Service Sizing Data Installation Calculation #2 Disconnect Switch Sizing DSSControls Using 115 VAC Hazardous Voltage Field Installed Control Wiring Hazardous VoltageHot Gas Bypass All control options EVP Interlocks EVP Flow control 6S58EVP Circulating Pump Interlock Outside Air Thermostat 5S57AC Conductors Controls using 24 VAC Hazardous VoltageControls using DC Analog Input/Outputs Hazardous Voltage DC Conductors Economizer Actuator CircuitEconomizer Actuator Circuit Legend Temperature Control ParametersNo System Control Refer to Wiring Notes on p Installation Discharge Air Sensor Honeywell 6RT3 Variable Air Volume Control Honeywell W7100ANight Setback Hazardous Voltage Suction Line ThermostatEVP Chiller Control W7100G Discharge Chilled Water Controller EVP Chiller Remote Panel Chilled Water Temperature Sensor Honeywell 6RT2Outside Air Thermostat 5S57 Field Provided Refer to Wiring Notes on Page p Thermostat Checkout Constant Volume Control HoneywellThermostat Wiring Electronic Zone Thermostat Honeywell T7067T7067 Electronic Zone Thermostat & Q667 Switching Subbase Discharge Air Sensor Honeywell 6RT1 Q667 Switching SubbaseRefer to Wiring Notes on Page p RT1 Discharge Air Sensor Assembly EVP Chiller Applications Compressor DamageSystem Pre-Start Procedures System Evacuation ProceduresTypical Vacuum Pump Hookup System Pre-Start Procedures Standing Vacuum TestEvacuation Time vs. Pressure Rise System Pre-Start Procedures W7100A Discharge Air Controller Zone or Discharge Air Temp Controller Economizer Actuator CheckoutOhms 4200 4000 3800 System Pre-Start Procedures W7100G Chilled Water Controller Master Energy Control Checkout Hazardous Voltage Zone Thermostat Checkout Honeywell T7067 Terminals Zone Thermostat 6U37 Voltage Output rampsOhms Electrical Phasing Voltage ImbalanceEconomizer Cycle Sequence of OperationVAV W7100A Discharge Air Controller 7U11 Thermostatic Expansion Valve Chilled Water Temperature Controller 6U11System Start-Up W7100G Staging Sequence Condenser FansPump Down Low Ambient DampersCompressor Crankcase Heaters Hot Gas Bypass Operation Low Ambient Damper Adjustment Factory or Field InstalledLive Electrical Components System Start-Up Low Ambient Thermostats200 300 Freezestat SettingEVP Chiller Applications Verifying Proper Supply Fan Rotation Air Over Evaporator ApplicationRotating Components System Airflow MeasurementCompressor Start-Up All Systems Compressor Damage Live Electrical Components Measuring Superheat SubcoolingMeasuring Subcooling Recommended Refrigerant Capacities Pressure Control Switch SettingsMinimum starting Ambient Temperature Compressor OilCompressor Sequence Typical Compressor Locations Ton Pressure Curve System Start-Up System Start-Up Ton Pressure Curve per Circuit 100 101 Recommended Operating Setpoints Final System SetupSample Maintenance Log At Low Ambient Start-Up Scroll Compressor ReplacementCompressor Operational Sounds At ShutdownCompressor Circuit Breaker Data Service & MaintenanceAir Handling Equipment Fuse Replacement DataMonthly Maintenance Fuse Replacement DataCondensing Unit Coil CleaningSystem operation Hazardous PressuresWarranty and Liability Clause Numerics Symbols111 IndexSS-SVX09A-EN

RAUC-C20, RAUC-C40, RAUC-C25, RAUC-C30, RAUC-C60 specifications

Trane, a leader in HVAC solutions, offers innovative air conditioning units designed for superior performance and energy efficiency. Among their advanced products are the Trane RAUC-C30, RAUC-C20, RAUC-C40, RAUC-C60, and RAUC-C50, which cater to various cooling and heating needs in residential and commercial applications.

The RAUC-C series showcases cutting-edge technology, ensuring effective climate control while minimizing energy consumption. These units are equipped with variable-speed compressors, allowing for precise cooling capacities and reduced noise levels during operation. This feature ensures that users can enjoy optimal comfort without the disruptive noise often associated with traditional HVAC systems.

One of the standout technologies used in the RAUC-C series is Trane’s advanced inverter technology. This system intelligently adjusts the compressor speed based on real-time cooling demands, enhancing efficiency and prolonging the unit's lifespan. Additionally, the units come with high SEER (Seasonal Energy Efficiency Ratio) ratings, making them an excellent choice for those looking to lower their energy bills while maintaining a comfortable indoor environment.

The RAUC-C series units are designed with durability in mind. Constructed with robust materials, these air conditioning systems are built to withstand varying weather conditions. Their compact and lightweight design makes installation straightforward, and they can fit seamlessly into a variety of spaces, from residential homes to commercial buildings.

Another key characteristic of the RAUC-C series is their eco-friendly refrigerant, which meets strict environmental regulations. This not only supports sustainability efforts but also ensures efficient cooling performance. Furthermore, their smart technology capabilities enable integration with modern smart home systems, allowing users to manage their cooling settings remotely for added convenience.

Trane's focus on user-friendly interfaces makes these units easy to operate. The intuitive control systems allow users to customize their cooling preferences easily, providing flexibility to adapt to individual comfort needs.

Overall, the Trane RAUC-C30, RAUC-C20, RAUC-C40, RAUC-C60, and RAUC-C50 stand out for their energy efficiency, advanced technology, durability, and user-focused design. These features make them reliable choices for anyone seeking efficient and effective heating and cooling solutions.