Trane RAUC-C60, RAUC-C50, RAUC-C30, RAUC-C20, RAUC-C40 Measuring Subcooling, Measuring Superheat

Page 92

System Start-Up

11.After the compressors and condenser fans for the operating circuit have been operating for approximately 30 minutes, observe the operating pressures. Use the appropriate pressure curve in Figure 47 to determine the proper operating pressures. If the operating pressures indicate a refrigerant shortage, measure the system superheat and system subcooling.

Note: Do Not release refrigerant to the atmosphere! If adding or removing refrigerant is required, the service technician must comply with all Federal, State and local laws. Refer to general service bulletin MSCU-SB-1 (latest edition).

Subcooling

The outdoor ambient temperature must be between 65ºF and 105ºF and the relative humidity of the air entering the evaporator must be above 40 percent. When the temperatures are outside of these ranges, measuring the operating pressures can be meaningless.

With the unit operating at “Full Circuit Capacity”, acceptable subcooling ranges between 14ºF to 22ºF.

Measuring Subcooling

a.At the liquid line service valve, measure the liquid line pressure. Using a Refrigerant 22 pressure/temperature chart, convert the pressure reading into the corresponding saturated temperature.

b.Measure the actual liquid line temperature as close to the liquid line service valve as possible. To ensure an accurate reading, clean the line thoroughly where the temperature sensor will be attached. After securing the sensor to the line, insulate the sensor and line to isolate it from the ambient air.

Note: Glass thermometers do not have sufficient contact area to give an accurate reading.

c.Determine the system subcooling by subtracting the actual liquid line temperature (measured in b) from the saturated liquid temperature (converted in a).

Measuring Superheat

d.Measure the suction pressure at the outlet of the evaporator as close to the expansion valve bulb location as possible.

e.Measured the suction line temperature as close to the expansion valve bulb, as possible.

f.Using a Refrigerant/Temperature chart, convert the pressure reading to a corresponding saturated vapor temperature.

Note: On many Trane fan/coil units, an access valve is provided close to the expansion valve bulb location. This valve must be added on climate changers and other evaporators.

g.Subtract the saturated vapor temperature (converted in c), from the actual suction line temperature (measured in b). The difference between the two temperatures is known as “superheat”.

12.Verify that the oil level in each compressor is correct. The oil level may be down to the bottom of the sight glass but should never be above the sight glass.

13.Once the checks and adjustments for the operating circuit has been completed, check and record the:

ambient temperature; compressor oil level (each circuit);

compressor suction and discharge pressures (each circuit); superheat and subcooling (each circuit);

Record this data on an “operator’s maintenance log” shown in Table 18. Repeat these procedures for the second refrigeration circuit, if applicable.

92

SS-SVX09A-EN

Image 92
Contents Remote Split System Units JuneGrounding Required Environmental ConcernsResponsible Refrigerant Practices Overview of ManualTable of Contents SS-SVX09A-EN Compressor Nameplate Model Number DescriptionUnit Nameplate Unit Description Unit Inspection No Step SurfaceUnit Clearances EVP Chiller ConsiderationsFoundation Unit Dimensions & Weight InformationInstallation Installation RAUC-C20 Unit Dimensional Data & Recommended Clearances RAUC-C25 Unit Dimensional Data & Recommended Clearances RAUC-C30 Unit Dimensional Data & Recommended Clearances RAUC-C40 Unit Dimensional Data & Recommended Clearances RAUC-C50 Unit Dimensional Data & Recommended Clearances RAUC-C60 Unit Dimensional Data & Recommended Clearances Bphe 20 Evaporator Chiller Dimensions Bphe 25 Evaporator Chiller Dimensions Bphe 30 Evaporator Chiller Dimensions Bphe 40 Evaporator Chiller Dimensions Bphe 50 Evaporator Chiller Dimensions Bphe 60 Evaporator Chiller Dimensions Typical Unit Weights & Point Loading Data Typical EVP Chiller Weights & General DataRigging Heavy Objects Rigging and Center-of-Gravity DataTypical Neoprene Isolator Selection & Location Unit IsolationNeoprene Isolators Installation Spring Isolators Leveling the UnitShipping Fasteners Compressor Shipping HardwareTwo Manifolded Compressors Typical Spring Isolator Selection & LocationGeneral Unit Requirements Refrigerant Piping RequirementsEVP Chilled Water Piping Requirements Main Electrical Power Requirements Hazardous VoltageHazard of Explosion Ground Wire Field Installed Control Wiring RequirementsVolt Control Wiring All Units No Controls UnitsEVP Chiller Piping Low Voltage Wiring AC & DC Hazardous Voltage Variable Air Volume VAV UnitsConstant Volume Units Refrigerant Line ComponentsLiquid Line Moisture Indicator Sight Glass Access Valves PortsLiquid Line Solenoid Valves Thermostatic Expansion Valve TEVSolenoid Valve & Sight Glass w/Moisture Indicator Typical Placement of Split System piping ComponentsSuction Line Interconnecting Tubing Refrigerant PipingSuction Line Piping Use Type L refrigerant grade copper tubing onlyLiquid Line Interconnecting Tubing Liquid Line PipingEvaporator Piping Typical Coil Piping For Dual Circuit UnitsFinal Refrigerant Pipe Connections Hot Gas Bypass for Commercial Comfort-Cooling ApplicationsOptional Pressure Gauges Brazing Procedures Hazard of Explosion and Deadly Gases Leak Testing Procedure Hazard of Explosion Chilled Water Piping Evaporator Water-Pressure Drop Installation Air Vents Chiller Flow SwitchWater Temperature Sensor Water Pressure GaugesFreezestat Typical Piping RecommendationsOptional Flow Switch Illustration Final Water Piping ConnectionsField Installed Power Wiring Disconnect Switch External Handle Factory Mounted OptionMain Unit Power Wiring Hazardous Voltage Power Wire Sizing and Protection Device Customer Connection Wire RangeEquations Calculation #1 MCA, MOP, and RDEInstallation Calculation #2 Disconnect Switch Sizing DSS Electrical Service Sizing DataField Installed Control Wiring Hazardous Voltage Controls Using 115 VAC Hazardous VoltageEVP Interlocks EVP Flow control 6S58 EVP Circulating Pump InterlockOutside Air Thermostat 5S57 Hot Gas Bypass All control optionsAC Conductors Controls using 24 VAC Hazardous VoltageControls using DC Analog Input/Outputs Hazardous Voltage Economizer Actuator Circuit DC ConductorsEconomizer Actuator Circuit Legend Temperature Control ParametersNo System Control Refer to Wiring Notes on p Installation Variable Air Volume Control Honeywell W7100A Discharge Air Sensor Honeywell 6RT3Suction Line Thermostat Night Setback Hazardous VoltageEVP Chiller Control W7100G Discharge Chilled Water Controller Chilled Water Temperature Sensor Honeywell 6RT2 EVP Chiller Remote PanelOutside Air Thermostat 5S57 Field Provided Refer to Wiring Notes on Page p Constant Volume Control Honeywell Thermostat WiringElectronic Zone Thermostat Honeywell T7067 Thermostat CheckoutT7067 Electronic Zone Thermostat & Q667 Switching Subbase Q667 Switching Subbase Discharge Air Sensor Honeywell 6RT1Refer to Wiring Notes on Page p RT1 Discharge Air Sensor Assembly Compressor Damage EVP Chiller ApplicationsSystem Evacuation Procedures System Pre-Start ProceduresSystem Pre-Start Procedures Standing Vacuum Test Typical Vacuum Pump HookupEvacuation Time vs. Pressure Rise System Pre-Start Procedures W7100A Discharge Air Controller Economizer Actuator Checkout Zone or Discharge Air Temp ControllerOhms 4200 4000 3800 System Pre-Start Procedures W7100G Chilled Water Controller Master Energy Control Checkout Hazardous Voltage Zone Thermostat Checkout Honeywell T7067 Zone Thermostat 6U37 Voltage Output ramps TerminalsOhms Voltage Imbalance Electrical PhasingEconomizer Cycle Sequence of OperationVAV W7100A Discharge Air Controller 7U11 Thermostatic Expansion Valve Chilled Water Temperature Controller 6U11System Start-Up Condenser Fans W7100G Staging SequencePump Down Low Ambient DampersCompressor Crankcase Heaters Low Ambient Damper Adjustment Factory or Field Installed Live Electrical ComponentsSystem Start-Up Low Ambient Thermostats Hot Gas Bypass Operation200 300 Freezestat SettingEVP Chiller Applications Air Over Evaporator Application Rotating ComponentsSystem Airflow Measurement Verifying Proper Supply Fan RotationCompressor Start-Up All Systems Compressor Damage Live Electrical Components Measuring Superheat SubcoolingMeasuring Subcooling Pressure Control Switch Settings Minimum starting Ambient TemperatureCompressor Oil Recommended Refrigerant CapacitiesCompressor Sequence Typical Compressor Locations Ton Pressure Curve System Start-Up System Start-Up Ton Pressure Curve per Circuit 100 101 Final System Setup Recommended Operating SetpointsSample Maintenance Log Scroll Compressor Replacement Compressor Operational SoundsAt Shutdown At Low Ambient Start-UpService & Maintenance Compressor Circuit Breaker DataFuse Replacement Data Monthly MaintenanceFuse Replacement Data Air Handling EquipmentCoil Cleaning Condensing UnitHazardous Pressures System operationWarranty and Liability Clause Symbols NumericsIndex 111SS-SVX09A-EN

RAUC-C20, RAUC-C40, RAUC-C25, RAUC-C30, RAUC-C60 specifications

Trane, a leader in HVAC solutions, offers innovative air conditioning units designed for superior performance and energy efficiency. Among their advanced products are the Trane RAUC-C30, RAUC-C20, RAUC-C40, RAUC-C60, and RAUC-C50, which cater to various cooling and heating needs in residential and commercial applications.

The RAUC-C series showcases cutting-edge technology, ensuring effective climate control while minimizing energy consumption. These units are equipped with variable-speed compressors, allowing for precise cooling capacities and reduced noise levels during operation. This feature ensures that users can enjoy optimal comfort without the disruptive noise often associated with traditional HVAC systems.

One of the standout technologies used in the RAUC-C series is Trane’s advanced inverter technology. This system intelligently adjusts the compressor speed based on real-time cooling demands, enhancing efficiency and prolonging the unit's lifespan. Additionally, the units come with high SEER (Seasonal Energy Efficiency Ratio) ratings, making them an excellent choice for those looking to lower their energy bills while maintaining a comfortable indoor environment.

The RAUC-C series units are designed with durability in mind. Constructed with robust materials, these air conditioning systems are built to withstand varying weather conditions. Their compact and lightweight design makes installation straightforward, and they can fit seamlessly into a variety of spaces, from residential homes to commercial buildings.

Another key characteristic of the RAUC-C series is their eco-friendly refrigerant, which meets strict environmental regulations. This not only supports sustainability efforts but also ensures efficient cooling performance. Furthermore, their smart technology capabilities enable integration with modern smart home systems, allowing users to manage their cooling settings remotely for added convenience.

Trane's focus on user-friendly interfaces makes these units easy to operate. The intuitive control systems allow users to customize their cooling preferences easily, providing flexibility to adapt to individual comfort needs.

Overall, the Trane RAUC-C30, RAUC-C20, RAUC-C40, RAUC-C60, and RAUC-C50 stand out for their energy efficiency, advanced technology, durability, and user-focused design. These features make them reliable choices for anyone seeking efficient and effective heating and cooling solutions.