Intel 315889-002 manual Voltage Transient Tool VTT Zf Theory, = FFT V t FFT I t

Page 52

Z(f) Constant Output Impedance Design

frequency applied by the application. Hence a better method is needed to extract the impedance profile with the VR operating. The following sections introduce the theory behind using a VTT tool to create an impedance profile for the VR system.

A.2 Voltage Transient Tool (VTT) Z(f) Theory

The following expression is the definition of impedance as a function of frequency looking back from the VTT tool into the filter network and VRM.

Z ( f ) = FFT (V (t))

FFT (I (t))

The representation of the corresponding Fourier spectra of the voltage and current responses are shown in Figure A-2. The first harmonic values from the Fast Fourier Transform (FFT) are used in the calculation of Z(f). The ratio of the two, yields the impedance at a given frequency, f. By sweeping the VTT generated load transient repetition rate, I(t), over the desired region of interest, additional points are estimated on the impedance profile to obtain a near continuous impedance spectrum plot.

In the VTT tool, the die voltage, V(t), is brought out through a pair of non-current carrying remote sense pins, tied to the Vcc and Vss power plane and measured on the VTT tool substrate. The current, I(t), is a differential voltage measured across the current shunt resistors in the VTT tool. The oscilloscope's math function is used to convert the time domain voltage droop and current measurements into their corresponding frequency domain spectrum. Since the FFT of the actual response waveforms are calculated, perfect square waves of current are not needed as a stimulus. The accuracy and frequency response of this method is limited to the current shunt resistor's accuracy and the shunt's parasitic inductance. Parasitic inductance in the current shunt resistors will over estimate the actual current and hence the method will under estimate the impedance at frequencies where the inductive voltage drop dominates the resistive voltage drop. The 50 pH of parasitic inductance in the VTT causes an over estimation of current for frequencies over 1 MHz and an under estimation of impedance. This can be corrected by post processing of the data and removing the inductive voltage spike.

52

315889-002

Image 52
Contents Design Guidelines 315889-002 Contents Figures Tables315889-002 Revision History Rev # Description Rev. DateRevision Project Document State Projects Covered 315889-002 Introduction and Terminology ApplicationsVRM/EVRD 11.0 Supported Platforms and Processors Guideline Categories Guideline CategoriesOutput Voltage Requirements Processor VID signal implementationVoltage and Current Required Time Duration s Load Line Definitions Required Icc GuidelinesLoad Line / Processors Select VIDSelect, LL1, LL0 Codes Sheet 1CC Tolerance / Die Load Line Units Select VIDSelect, LL1, LL0 Codes Sheet 2 Voltage Tolerance RequiredMode Processor VCC Overshoot Required Impedance vs. Frequency ExpectedVR BW Stability Required Processor Power Sequencing RequiredImpedance ZLL Measurement Parameter Limits Timing Min Default Max Remarks Startup Sequence Timing Parameters Sheet 1Dynamic Voltage Identification D-VID Startup Sequence Timing Parameters Sheet 2Processor Transition States Output Filter Capacitance Required Overshoot at Turn-On or Turn-Off RequiredPolymer PWL Quantity Value / Description Coefficient560µF/2.5V/20%/ Oscon 22µF/6.3V/20%/ X5R /1206 Mlcc Quantity Value Tolerance Temperature Motherboard Socket & PackageShut-Down Response Required Control Signals Output Enable Outen RequiredOuten Specifications VID 60 SpecificationsExtended VR 10 Voltage Identification VID Table 400 mV 200 mV 100 mV 50 mV 25 mV 12.5 mVDifferential Remote Sense VOSEN+ VR 11.0 Voltage Identification VID TableLGA Load Line Select LL0, LL1, VIDSelect LL0, LL1, VIDSelect SpecificationsVID Bit Mapping Control Signals Input Voltages Expected Input Voltage and CurrentLoad Transient Effects on Input Current Input Voltage and Current Over-Voltage Protection OVP Expected Processor Voltage Output ProtectionOver-Current Protection OCP Expected Processor Voltage Output Protection Output Indicators VRReady SpecificationsVRhot# Specifications Voltage Regulator Ready VRReady RequiredLoad Indicator Output LoadCurrent VRMpres# SpecificationsVRMID# Specifications VRM Present VRMpres# ExpectedVRM 11.0 and Platform Present Detection 315889-002 VRM Connector Expected VRM Tyco/Elcon Connector KeyingVRM 11.0 Connector Part Number and Vendor Name VRM Mechanical GuidelinesVRM 11.0 Connector Pin Descriptions Name Type DescriptionMechanical Dimensions Proposed VRM 11.0 Pin AssignmentsVRM 11.0 Module and Connector Operating Temperature Proposed VRM Board Temperature RequiredNon-Operating Temperature Proposed Environmental ConditionsSafety Proposed Altitude ProposedElectrostatic Discharge Proposed Shock and Vibration ProposedManufacturing Considerations Lead Free Pb FreeManufacturing Considerations Zf Constant Output Impedance Design Introduction ProposedFigure A-2. Zf Network Plot with 1.25 mΩ Load Line Zf Constant Output Impedance Design Voltage Transient Tool VTT Zf Theory = FFT V t FFT I tVTT Zf Measurement Method ResultsZf Constant Output Impedance Design 10uF 22uF Output Decoupling Design Procedure

315889-002 specifications

The Intel 315889-002 is a highly regarded processor that has made significant contributions to the computing landscape. As part of Intel's dedicated line of CPUs, this model is engineered to deliver robust performance and efficiency for a range of applications, from personal computing to enterprise solutions. Features of the Intel 315889-002 include its multi-core architecture, which allows for better multitasking capabilities. With multiple cores working simultaneously, users can run multiple applications without experiencing noticeable lag, leading to a smoother overall experience.

One of the standout technologies incorporated in the Intel 315889-002 is Intel Turbo Boost Technology. This technology intelligently increases the processor's clock speed to enhance performance when required while ensuring energy efficiency during lighter loads. This feature is particularly beneficial in environments where performance needs can fluctuate, such as in gaming or intensive data analysis.

The processor supports a wide variety of instruction sets, enhancing its compatibility with various software and applications. Additionally, it runs on a highly efficient microarchitecture that optimizes processing cycles, reducing power consumption and heat generation. This is crucial not only for maintaining system stability but also for prolonging the lifespan of the hardware.

Another notable characteristic is its built-in security features, including Intel Software Guard Extensions (SGX) which create isolated execution environments for sensitive operations. This is particularly important in today's digital age, where data security is a top priority for both individuals and organizations.

The Intel 315889-002 is also equipped with Integrated Graphics, which offloads graphical tasks from the CPU, enabling better performance in applications that require visual rendering without needing a dedicated graphics card. This feature is ideal for users who require decent graphics capabilities without the added expense of additional hardware.

Overall, the Intel 315889-002 stands out as a well-rounded processor that combines performance, efficiency, security, and versatility. Its advanced technologies and thoughtful design make it suitable for a wide variety of users, from gamers to professionals, seeking reliable and efficient computing solutions.