Installation 2

If remotely located distribution terminals are used, as shown in the following figure, the power supply output terminals should be connected to the remote distribution terminals by a pair of twisted and/or shielded wires. Connect each load to the distribution terminals separately. Remote voltage sensing is recommended under these circumstances. Sense either at the remote distribution terminals or, if one load is more sensitive than the others, directly at the critical load.

+V

Power -V

Supply

-Rem.sense -Local sense +Local sense +Rem.sense

Distribution terminal

+ Load#1

+V

 

+ Load#2

-V

+ Load#3

Output Noise and Impedance Effects

To minimize the noise pickup or radiation, the load wires and remote sense wires should be twisted-pairs to the shortest possible length. Shielding of sense leads may be necessary in high noise environments. Where shielding is used, connect the shield to the chassis via a rear panel ground screw. Even if noise is not a concern, the load and remote sense wires should be twisted-pairs to reduce coupling, which might impact the stability of power supply. The sense leads should be separated from the power leads.

Twisting the load wires reduces the parasitic inductance of the cable, which could produce high frequency voltage spikes at the load and the output because of current variation in the load itself.

The impedance introduced between the power supply output and the load could make the ripple and noise at the load worse than the noise at the power supply rear panel output. Additional filtering with bypass capacitors at the load terminals may be required to bypass the high frequency load current.

Inductive Loads

Inductive loads can produce voltage spikes that may be harmful to the power supply. A diode should be connected across the output. The diode voltage and current rating should be greater than the power supply maximum output voltage and current rating. Connect the cathode to the positive output and the anode to the negative output of the power supply.

Where positive load transients such as back EMF from a motor may occur, connect a surge suppressor across the output to protect the power supply. The breakdown voltage rating of the suppressor must be approximately 10% higher than the maximum output voltage of the power supply.

Series N5700 User’s Guide

27

Page 27
Image 27
Agilent Technologies N5700 manual Output Noise and Impedance Effects, Inductive Loads

N5700 specifications

Agilent Technologies, now part of Keysight Technologies, is renowned for its innovative solutions in electronic measurement and instrumentation. Among its impressive portfolio, the Agilent N5700 series of power supplies stands out, providing precision, reliability, and versatility for a range of applications in test and measurement.

The N5700 series features multiple models, each designed to meet the varying power requirements of test systems and electronic devices. One of its key characteristics is its adjustable output voltage and current, allowing users to set parameters according to specific test needs. With outputs ranging from 0 to 60 V and up to 6 A, the N5700 series caters to both low and high-power applications effectively.

A notable technology integrated into the N5700 series is its advanced measurement capabilities. The built-in voltmeter and ammeter enable real-time monitoring of output voltage and current, ensuring precise control over the power supplied to the device under test. This feature is particularly advantageous in troubleshooting and optimization scenarios, providing engineers with immediate feedback on performance.

The N5700 also embraces the latest in power supply control technology with its intuitive user interface. The front panel incorporates a clear display and simple navigation controls, allowing users to program settings easily and access functions without extensive training. Additionally, remote programming capabilities via GPIB, USB, or LAN facilitate integration into automated test setups, enhancing productivity and efficiency.

Thermal management is another hallmark of the N5700 series. Its design ensures effective heat dissipation, enabling reliable operation even under demanding conditions. This robustness is critical in environments where consistent performance is essential, such as in research laboratories and manufacturing facilities.

Furthermore, safety features are thoughtfully included in the N5700 series, such as overvoltage protection, overcurrent protection, and short-circuit protection. These elements assure users that their devices and test setups remain secure during testing, minimizing the risk of damage.

In summary, the Agilent N5700 series power supplies encapsulate the fusion of precision, advanced measurement technology, user-friendly design, thermal management, and robust safety features. This combination makes them an invaluable tool for engineers and researchers engaged in electronic testing and development across various industries. With its versatility and reliability, the N5700 series continues to play a pivotal role in advancing electronic measurement methodologies.