www.supportme.net

6.3 Configuring an axis

The NextMove ES is capable of controlling 4 stepper and 2 servo axes. This section describes how to configure both types of axis.

6.3.1 Selecting the axis type

An axis can be configured as either a servo axis or a stepper axis. The factory preset configuration sets all axes as unassigned (off), so it is necessary to configure an axis as either stepper or servo before it can be used. The number of servo and stepper hardware channels defines how many axes of each type may be configured. In the following example, the WorkBench v5 Axis Config Wizard will be used to assign axes:

1.In the Toolbox, click the Axis Config icon.

2.For each required axis, click in the Configuration column and select Servo or Stepper from the drop down box.

The Axis Config Wizard automatically assigns a Hardware Channel to the axis. For example, Servo Channel 0 indicates the servo axis will use the controller’s Demand0 output; Stepper Channel 1 indicates the stepper axis will

use the controller’s STEP1 and DIR1 outputs. Optionally, the default hardware channel assignment can be altered by clicking in the Hardware Channel column and choosing an alternative channel. This means the axis will no longer use the correspondingly numbered physical outputs (Demandx or STEPx & DIRx), so extra care must be taken when connecting the NextMove ES to drive amplifiers.

3.Click Finish to complete the Axis Config Wizard. The axis configuration will be downloaded to the NextMove ES.

Note: If a “Hardware channel required is in use” or “Hardware not available” error message is displayed, the configuration is not downloaded. It is likely that the number of selected servo or stepper axes exceeds the number of physical axes of that type available on the NextMove ES. An error is also caused if the same hardware channel has been selected for more than one servo axis, or for more than one stepper axis.

It is recommended that unused axes are always set to OFF, as this provides more processing time for the axes that are in use. Setting an axis to Virtual means that it can be used to simulate motion within the controller, but uses no physical outputs (hardware channel).

See the MintMT help file for details of the CONFIG and AXISCHANNEL keywords.

6-6 Operation

MN1928

Page 78
Image 78
Baldor MN1928 installation manual Configuring an axis, Selecting the axis type

MN1928 specifications

The Baldor MN1928 is a highly regarded motor designed for a variety of industrial applications, known for its durability and efficiency. This motor is part of Baldor’s extensive range of products, which are engineered to meet the demands of heavy-duty operations.

One of the key features of the Baldor MN1928 is its robust construction. Built with high-quality materials, this motor is designed to withstand harsh environmental conditions often found in industrial settings. The steel frame is not only resilient, but it also enhances the motor's cooling capabilities, enabling it to perform effectively over extended periods.

The MN1928 is equipped with advanced technologies that optimize its performance. One notable technology is the use of high-efficiency induction motor design. This reduces energy consumption significantly and contributes to lower operational costs. The motor is also designed with a continuous duty rating, making it capable of running for long hours without compromising its functionality or lifespan.

In terms of characteristics, the Baldor MN1928 features a reliable ball bearing design, which minimizes friction and wear, ensuring smoother operation and increased reliability. With a horsepower rating that suits a range of applications, it provides the necessary torque and speed to power various machinery effectively. The multi-voltage design allows for versatile installation options, accommodating different electrical systems while ensuring efficient performance.

Another important characteristic of this motor is its ease of maintenance. The design allows for straightforward access to components, making it simple for technicians to perform routine checks and maintenance. This is particularly beneficial in industrial settings where downtime can be costly.

Safety is also a priority in the design of the Baldor MN1928. Equipped with thermal overload protection, it prevents overheating, reducing the risk of damage caused by excessive temperatures during operation. Additionally, the motor complies with various industry standards, ensuring safe operation within diverse environments.

In summary, the Baldor MN1928 stands out as a reliable choice for industrial applications, offering a combination of durability, efficiency, and advanced technology. Its robust construction, high-efficiency design, and safety features make it a preferred option for many enterprises seeking dependable motor solutions.