Configuring IEEE 802.1Q and Layer 2 Protocol Tunneling

Layer 2 Protocol Tunneling

The switch does not support Layer 2 protocol tunneling on ports with switchport mode dynamic auto or dynamic desirable.

DTP is not compatible with layer 2 protocol tunneling.

The edge switches on the outbound side of the service-provider network restore the proper Layer 2 protocol and MAC address information and forward the packets to all tunnel and access ports in the same metro VLAN.

For interoperability with third-party vendor switches, the switch supports a Layer 2 protocol-tunnel bypass feature. Bypass mode transparently forwards control PDUs to vendor switches that have different ways of controlling protocol tunneling. When Layer 2 protocol tunneling is enabled on ingress ports on a switch, egress trunk ports forward the tunneled packets with a special encapsulation. If you also enable Layer 2 protocol tunneling on the egress trunk port, this behavior is bypassed, and the switch forwards control PDUs without any processing or modification.

The switch supports PAgP, LACP, and UDLD tunneling for emulated point-to-point network topologies. Protocol tunneling is disabled by default but can be enabled for the individual protocols on IEEE 802.1Q tunnel ports or on access ports.

If you enable PAgP or LACP tunneling, we recommend that you also enable UDLD on the interface for faster link-failure detection.

Loopback detection is not supported on Layer 2 protocol tunneling of PAgP, LACP, or UDLD packets.

EtherChannel port groups are compatible with tunnel ports when the IEEE 802.1Q configuration is consistent within an EtherChannel port group.

If an encapsulated PDU (with the proprietary destination MAC address) is received from a tunnel port or an access port with Layer 2 tunneling enabled, the tunnel port is shut down to prevent loops. The port also shuts down when a configured shutdown threshold for the protocol is reached. You can manually reenable the port (by entering a shutdown and a no shutdown command sequence). If errdisable recovery is enabled, the operation is retried after a specified time interval.

Only decapsulated PDUs are forwarded to the customer network. The spanning-tree instance running on the service-provider network does not forward BPDUs to tunnel ports. CDP packets are not forwarded from tunnel ports.

When protocol tunneling is enabled on an interface, you can set a per-protocol, per-port, shutdown threshold for the PDUs generated by the customer network. If the limit is exceeded, the port shuts down. You can also limit BPDU rate by using QoS ACLs and policy maps on a tunnel port.

When protocol tunneling is enabled on an interface, you can set a per-protocol, per-port, drop threshold for the PDUs generated by the customer network. If the limit is exceeded, the port drops PDUs until the rate at which it receives them is below the drop threshold.

Because tunneled PDUs (especially STP BPDUs) must be delivered to all remote sites so that the customer virtual network operates properly, you can give PDUs higher priority within the service-provider network than data packets received from the same tunnel port. By default, the PDUs use the same CoS value as data packets.

Related Topics

Configuring Layer 2 Protocol Tunneling, on page 135

Example: Configuring Layer 2 Protocol Tunneling, on page 144

Catalyst 2960-XR Switch VLAN Configuration Guide, Cisco IOS Release 15.0(2)EX1

OL-29440-01

123

Page 137
Image 137
Cisco Systems WSC2960XR48FPSI manual 123

WSC2960XR48FPSI specifications

The Cisco WSC2960XR48FPSI is an advanced, high-performance switch that plays a vital role in today's enterprise networking environments. Designed for reliability and efficiency, it serves as a foundational component for organizations concentrating on network agility and scalability.

One of the standout features of the WSC2960XR48FPSI is its ability to support 48 Gigabit Ethernet ports, facilitating high-speed connectivity across multiple devices. This capacity makes it an ideal choice for enterprises that require robust network infrastructure to handle large volumes of traffic effortlessly. Additionally, it includes two 10-Gigabyte SFP+ uplink ports, providing enhanced bandwidth for backbone connections, enabling seamless integration with data center environments.

The switch supports Cisco's StackPower technology, which allows multiple switches to share power resources. This capability not only provides redundancy but also ensures that organizational networks can be efficiently managed, reducing operational costs by utilizing power resources wisely.

In terms of reliability, the WSC2960XR48FPSI offers a fanless design, making it an optimal choice for deployments in noise-sensitive environments such as classrooms or offices. Its features include support for Cisco's FlexStack-Plus technology, which allows for easy stacking of up to eight units. This results in simplified management and increased bandwidth as switches in the stack operate as a single entity.

The switch is powered by Cisco IOS Software, providing robust features, including advanced security protocols, quality of service (QoS) capabilities, and comprehensive network management tools. With support for multicast routing and enhanced security, organizations can safeguard their data while ensuring smooth and reliable communication across applications.

Moreover, the Cisco WSC2960XR48FPSI is designed to be energy-efficient, compliant with IEEE 802.3az Energy Efficient Ethernet standards, which aids in reducing power consumption without sacrificing performance. This commitment to sustainability makes it a favorable option for organizations striving for greener operations.

To summarize, the Cisco WSC2960XR48FPSI is an exemplary model of reliability, scalability, and performance. Its sophisticated features, including high port density, advanced security measures, and energy efficiency, make it a cornerstone for modern enterprise networks, enabling organizations to adapt effectively in an ever-evolving digital landscape.