Configuring IEEE 802.1Q and Layer 2 Protocol Tunneling

Layer 2 Tunneling for EtherChannels

Layer 2 Tunneling for EtherChannels

To configure Layer 2 point-to-point tunneling to facilitate the automatic creation of EtherChannels, you need to configure both the SP (service-provider) edge switch and the customer switch.

Related Topics

Configuring Layer 2 Protocol Tunneling, on page 135

Example: Configuring Layer 2 Protocol Tunneling, on page 144

Information about Tunneling

IEEE 802.1Q and Layer 2 Protocol Overview

Virtual private networks (VPNs) provide enterprise-scale connectivity on a shared infrastructure, often Ethernet-based, with the same security, prioritization, reliability, and manageability requirements of private networks. Tunneling is a feature designed for service providers who carry traffic of multiple customers across their networks and are required to maintain the VLAN and Layer 2 protocol configurations of each customer without impacting the traffic of other customers.

Note For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

IEEE 802.1Q Tunneling

Business customers of service providers often have specific requirements for VLAN IDs and the number of VLANs to be supported. The VLAN ranges required by different customers in the same service-provider network might overlap, and traffic of customers through the infrastructure might be mixed. Assigning a unique range of VLAN IDs to each customer would restrict customer configurations and could easily exceed the VLAN limit (4096) of the IEEE 802.1Q specification.

Using the IEEE 802.1Q tunneling feature, service providers can use a single VLAN to support customers who have multiple VLANs. Customer VLAN IDs are preserved, and traffic from different customers is segregated within the service-provider network, even when they appear to be in the same VLAN. Using IEEE 802.1Q tunneling expands VLAN space by using a VLAN-in-VLAN hierarchy and retagging the tagged packets. A port configured to support IEEE 802.1Q tunneling is called a tunnel port. When you configure tunneling, you assign a tunnel port to a VLAN ID that is dedicated to tunneling. Each customer requires a separate service-provider VLAN ID, but that VLAN ID supports all of the customers VLANs.

Customer traffic tagged in the normal way with appropriate VLAN IDs comes from an IEEE 802.1Q trunk port on the customer device and into a tunnel port on the service-provider edge switch. The link between the customer device and the edge switch is asymmetric because one end is configured as an IEEE 802.1Q trunk

 

Catalyst 2960-XR Switch VLAN Configuration Guide, Cisco IOS Release 15.0(2)EX1

124

OL-29440-01

Page 138
Image 138
Cisco Systems WSC2960XR48FPSI Information about Tunneling, Layer 2 Tunneling for EtherChannels, Ieee 802.1Q Tunneling

WSC2960XR48FPSI specifications

The Cisco WSC2960XR48FPSI is an advanced, high-performance switch that plays a vital role in today's enterprise networking environments. Designed for reliability and efficiency, it serves as a foundational component for organizations concentrating on network agility and scalability.

One of the standout features of the WSC2960XR48FPSI is its ability to support 48 Gigabit Ethernet ports, facilitating high-speed connectivity across multiple devices. This capacity makes it an ideal choice for enterprises that require robust network infrastructure to handle large volumes of traffic effortlessly. Additionally, it includes two 10-Gigabyte SFP+ uplink ports, providing enhanced bandwidth for backbone connections, enabling seamless integration with data center environments.

The switch supports Cisco's StackPower technology, which allows multiple switches to share power resources. This capability not only provides redundancy but also ensures that organizational networks can be efficiently managed, reducing operational costs by utilizing power resources wisely.

In terms of reliability, the WSC2960XR48FPSI offers a fanless design, making it an optimal choice for deployments in noise-sensitive environments such as classrooms or offices. Its features include support for Cisco's FlexStack-Plus technology, which allows for easy stacking of up to eight units. This results in simplified management and increased bandwidth as switches in the stack operate as a single entity.

The switch is powered by Cisco IOS Software, providing robust features, including advanced security protocols, quality of service (QoS) capabilities, and comprehensive network management tools. With support for multicast routing and enhanced security, organizations can safeguard their data while ensuring smooth and reliable communication across applications.

Moreover, the Cisco WSC2960XR48FPSI is designed to be energy-efficient, compliant with IEEE 802.3az Energy Efficient Ethernet standards, which aids in reducing power consumption without sacrificing performance. This commitment to sustainability makes it a favorable option for organizations striving for greener operations.

To summarize, the Cisco WSC2960XR48FPSI is an exemplary model of reliability, scalability, and performance. Its sophisticated features, including high port density, advanced security measures, and energy efficiency, make it a cornerstone for modern enterprise networks, enabling organizations to adapt effectively in an ever-evolving digital landscape.