Configuring IEEE 802.1Q and Layer 2 Protocol Tunneling

IEEE 802.1Q Tunneling Configuration Guidelines

Example: Configuring an IEEE 802.1Q Tunneling Port, on page 143

IEEE 802.1Q Tunneling Configuration Guidelines

When you configure IEEE 802.1Q tunneling, you should always use an asymmetrical link between the customer device and the edge switch, with the customer device port configured as an IEEE 802.1Q trunk port and the edge switch port configured as a tunnel port.

Assign tunnel ports only to VLANs that are used for tunneling.

Configuration requirements for native VLANs and for and maximum transmission units (MTUs) are explained in these next sections.

Native VLANs

When configuring IEEE 802.1Q tunneling on an edge switch, you must use IEEE 802.1Q trunk ports for sending packets into the service-provider network. However, packets going through the core of the service-provider network can be carried through IEEE 802.1Q trunks, ISL trunks, or nontrunking links. When IEEE 802.1Q trunks are used in these core switches, the native VLANs of the IEEE 802.1Q trunks must not match any native VLAN of the nontrunking (tunneling) port on the same switch because traffic on the native VLAN would not be tagged on the IEEE 802.1Q sending trunk port.

In the following network figure, VLAN 40 is configured as the native VLAN for the IEEE 802.1Q trunk port from Customer X at the ingress edge switch in the service-provider network (Switch B). Switch A of Customer X sends a tagged packet on VLAN 30 to the ingress tunnel port of Switch B in the service-provider network, which belongs to access VLAN 40. Because the access VLAN of the tunnel port (VLAN 40) is the same as the native VLAN of the edge-switch trunk port (VLAN 40), the metro tag is not added to tagged packets received from the tunnel port. The packet carries only the VLAN 30 tag through the service-provider network to the trunk port of the egress-edge switch (Switch C) and is misdirected through the egress switch tunnel port to Customer Y.

These are some ways to solve this problem:

Use the vlan dot1q tag native global configuration command to configure the edge switch so that all packets going out an IEEE 802.1Q trunk, including the native VLAN, are tagged. If the switch is configured to tag native VLAN packets on all IEEE 802.1Q trunks, the switch accepts untagged packets, but sends only tagged packets.

Catalyst 2960-XR Switch VLAN Configuration Guide, Cisco IOS Release 15.0(2)EX1

OL-29440-01

127

Page 141
Image 141
Cisco Systems WSC2960XR48FPSI manual Ieee 802.1Q Tunneling Configuration Guidelines, Native VLANs

WSC2960XR48FPSI specifications

The Cisco WSC2960XR48FPSI is an advanced, high-performance switch that plays a vital role in today's enterprise networking environments. Designed for reliability and efficiency, it serves as a foundational component for organizations concentrating on network agility and scalability.

One of the standout features of the WSC2960XR48FPSI is its ability to support 48 Gigabit Ethernet ports, facilitating high-speed connectivity across multiple devices. This capacity makes it an ideal choice for enterprises that require robust network infrastructure to handle large volumes of traffic effortlessly. Additionally, it includes two 10-Gigabyte SFP+ uplink ports, providing enhanced bandwidth for backbone connections, enabling seamless integration with data center environments.

The switch supports Cisco's StackPower technology, which allows multiple switches to share power resources. This capability not only provides redundancy but also ensures that organizational networks can be efficiently managed, reducing operational costs by utilizing power resources wisely.

In terms of reliability, the WSC2960XR48FPSI offers a fanless design, making it an optimal choice for deployments in noise-sensitive environments such as classrooms or offices. Its features include support for Cisco's FlexStack-Plus technology, which allows for easy stacking of up to eight units. This results in simplified management and increased bandwidth as switches in the stack operate as a single entity.

The switch is powered by Cisco IOS Software, providing robust features, including advanced security protocols, quality of service (QoS) capabilities, and comprehensive network management tools. With support for multicast routing and enhanced security, organizations can safeguard their data while ensuring smooth and reliable communication across applications.

Moreover, the Cisco WSC2960XR48FPSI is designed to be energy-efficient, compliant with IEEE 802.3az Energy Efficient Ethernet standards, which aids in reducing power consumption without sacrificing performance. This commitment to sustainability makes it a favorable option for organizations striving for greener operations.

To summarize, the Cisco WSC2960XR48FPSI is an exemplary model of reliability, scalability, and performance. Its sophisticated features, including high port density, advanced security measures, and energy efficiency, make it a cornerstone for modern enterprise networks, enabling organizations to adapt effectively in an ever-evolving digital landscape.