The IDD does not reply to the SCSI bus for up to 2 seconds after the initial self-diagnostics is started. After that, the IDD can accept the I/O operation request correctly, but the received command, except the executable commands under the not ready state (such as INQUIRY, START/STOP UNIT), is terminated with the CHECK CONDITION status (NOT READY [=2]/logical unit is in process of becoming ready [=04-01] or logical unit not ready, initializing command required [=04-02]) during the interval from the spindle motor becomes stable to the IDD becomes ready. The executable command under the not ready state is executed in parallel with the initial self-diagnostics, or is queued by the command queuing feature and is executed after completion of the initial self-diagnostics. When the command that comes under the exception condition of the command queuing is issued at that time, the IDD posts the BUSY status for the command. When the error is detected during the initial self-diagnostics, the CHECK CONDITION status is posted for all commands that were stacked during the initial self- diagnostics. For the command execution condition, refer to Section 1.4 “Command Queuing Function” and Subsection 1.7.4 “Command processing in the not ready state” in the SCSI Logical Interface Specifications.

(2)Online self-diagnostics (SEND DIAGNOSTIC command)

The INIT can make the IDD execute self-diagnostics by issuing the SEND DIAGNOSTIC command.

The INIT specifies the execution of self-diagnostics by setting 1 for the SelfTest bit on the CDB in the SEND DIAGNOSTIC command and specifies the test contents with the UnitOfl bit.

When the UnitOfl bit on the CDB is set to 0, the IDD executes the hardware function test only once. When UnitOfl bit is set to 1, the IDD executes the hardware function test, seek (positioning) test, and data write/read test for the Internal test space only once.

a.Error recovery during self-diagnostics

During the self-diagnostics specified by the SEND DIAGNOSTIC command, when the recoverable error is detected during the seek or the write/read test, the IDD performs the error recovery according to the MODE SELECT parameter value (read/write error recovery parameter, additional error recovery parameter) which the INIT specifies at the time of issuing the SEND DIAGNOSTIC command.

PER

Operation of self-diagnostics

0The self-diagnostics continues when the error is recovered. The self- diagnostics terminates normally so far as the unrecoverable error is not detected.

1The self-diagnostics continues when the error is recovered. If the unrecoverable error is not detected, the consecutive tests are executed till last test but the self-diagnostics terminates with error. The error information indicates that of the last recovered error.

b.Reporting result of self-diagnostics and error indication

C141-E205

6-3

Page 99
Image 99
Fujitsu MAU3073NC/NP, MAU3147NC/NP, MAU3036NC/NP manual Operation of self-diagnostics

MAU3036NC/NP, MAU3147NC/NP, MAU3073NC/NP specifications

The Fujitsu MAU3036NC/NP, MAU3147NC/NP, and MAU3073NC/NP are advanced models designed to offer high performance and reliability in various computing environments. These models are particularly notable for their optimized efficiency and robust feature set, making them suitable for a range of applications from enterprise servers to high-performance computing.

One of the standout features of the MAU series is its reliance on cutting-edge technology that maximizes data handling capabilities. The MAU3036NC/NP boasts a formidable capacity for high-speed data processing, making it ideal for tasks requiring quick data retrieval and storage. With an optimized caching mechanism, this model enhances data throughput and reduces latency, contributing to an overall faster response time in demanding applications.

The MAU3147NC/NP introduces further advancements with its enhanced thermal management system. This ensures that the unit operates at optimal temperatures, reducing the risk of overheating and prolonging the lifespan of the hardware. Additionally, this model implements advanced error-correcting code (ECC) memory, which significantly improves reliability by detecting and correcting internal data corruption, a crucial feature in mission-critical environments.

Meanwhile, the MAU3073NC/NP excels in terms of scalability. Its architecture allows for easy upgrades and expansions, accommodating growing data needs without significant downtime. This flexibility is essential for businesses looking to future-proof their operations and adapt to changing demands seamlessly.

All three models incorporate Fujitsu's innovative energy-efficient technologies, which not only reduce power consumption but also align with global sustainability goals. The intelligent power management systems make these units not only cost-effective but also environmentally friendly, demonstrating Fujitsu's commitment to responsible manufacturing.

Furthermore, robust connectivity options, including multiple interface support, make these models easily integrable into existing IT infrastructures. They are compatible with a variety of operating systems and software, ensuring that users can leverage their full potential regardless of their specific setup.

In summary, the Fujitsu MAU3036NC/NP, MAU3147NC/NP, and MAU3073NC/NP series exemplify the blend of performance, reliability, and efficiency. With features tailored to meet the evolving needs of modern businesses, these models stand out in the competitive landscape of computing solutions, ensuring that users can address both current and future challenges in data management and processing.