IXD1110 Demo Board

Table 7. GBIC Test Points (Sheet 2 of 2)

 

 

 

 

 

 

 

 

 

Test Point

Symbol

 

IXF1110 Ball

Description

 

 

Designator

 

 

 

 

 

 

 

 

 

 

 

 

DTP11

I2C_DATA_4

 

E23

I2C_DATA_4 for IXF1110

 

DTP12

I2C_DATA_5

 

H24

I2C_DATA_5 for IXF1110

 

DTP13

I2C_DATA_6

 

G20

I2C_DATA_6 for IXF1110

 

DTP14

I2C_DATA_7

 

E22

I2C_DATA_7 for IXF1110

 

DTP15

I2C_DATA_8

 

G24

I2C_DATA_8 for IXF1110

 

DTP16

I2C_DATA_9

 

F24

I2C_DATA_9 for IXF1110

 

NOTE: DTP = Differential Test Point

 

 

 

 

 

 

 

 

8.4Mictor Connectors

Table 8 provides a detailed list of the Mictor Connector test points that are available using Mictor Connectors and that are designed for easy use with the Tektronix* P6434 Mass Termination Probe. Using these connectors with a Tektronix* logic analyzer allows the probing of the signals in Table 8.

Table 8. Mictor Connector Test Points (Sheet 1 of 2)

Probe

CPU Data

IXF1110

Probe

Address

IXF1110

Probe

Pause I/F

IXF1110

Ball

Bus and

Ball

and Reset

Ball

A

Bus

Designator

C

Other

Designator

D

Signals

Designator

 

 

 

 

 

 

 

 

 

 

 

 

 

A0(0)

uPx_Data0

B3

C0(0)

TA

D0(0)

 

 

 

 

 

 

 

 

 

 

A0(1)

uPx_Data1

A4

C0(1)

Start_XFER

D0(1)

 

 

 

 

 

 

 

 

 

 

A0(2)

uPx_Data2

B9

C0(2)

RD/~WR

D0(2)

 

 

 

 

 

 

 

 

 

 

A0(3)

uPx_Data3

A7

C0(3)

Gen_PCsN

D0(3)

 

 

 

 

 

 

 

 

 

 

A0(4)

uPx_Data4

C12

C0(4)

 

D0(4)

 

 

 

 

 

 

 

 

 

 

A0(5)

uPx_Data5

E11

C0(5)

CsN

D0(5)

 

 

 

 

 

 

 

 

 

 

A06)

uPx_Data6

C13

C0(6)

Bus_request

D0(6)

 

 

 

 

 

 

 

 

 

 

A0(7)

uPx_Data7

A8

C0(7)

Bus_Busy

D0(7)

 

 

 

 

 

 

 

 

 

 

A1(0)

uPx_Data8

A10

C1(0)

Bus_Grant

D1(0)

 

 

 

 

 

 

 

 

 

 

A1(1)

uPx_Data9

A9

C1(1)

 

D1(1)

 

 

 

 

 

 

 

 

 

 

A1(2)

uPx_Data10

E12

C1(2)

uPx_RdyN

C22

D1(2)

 

 

 

 

 

 

 

 

 

 

A1(3)

uPx_Data11

A11

C1(3)

 

D1(3)

 

 

 

 

 

 

 

 

 

 

A1(4)

uPx_Data12

G12

C1(4)

uPx_CsN

F20

D1(4)

 

 

 

 

 

 

 

 

 

 

A1(5)

uPx_Data13

E10

C1(5)

uPx_WrN

A18

D1(5)

 

 

 

 

 

 

 

 

 

 

A1(6)

uPx_Data14

F11

C1(6)

uPx_RdN

H14

D1(6)

POR

 

 

 

 

 

 

 

 

 

A1(7)

uPx_Data15

D7

C1(7)

 

D1(7)

HRESET

 

 

 

 

 

 

 

 

 

A2(0)

uPx_Data16

D14

C2(0)

uPx_Add0

J1

D2(0)

 

 

 

 

 

 

 

 

 

 

A2(1)

uPx_Data17

C14

C2(1)

uPx_Add1

G4

D2(1)

 

 

 

 

 

 

 

 

 

 

A2(2)

uPx_Data18

F14

C2(2)

uPx_Add2

F3

D2(2)

 

 

 

 

 

 

 

 

 

 

1. For evaluation of the signals provided by the Mictor connector, use the corresponding logic analyzer probe.

 

 

 

 

 

 

 

 

 

Development Kit Manual

21

Document Number: 250807

Revision Number: 003

Revision Date: June 27, 2003

Page 21
Image 21
Intel IXD1110 manual Mictor Connectors, Gbic Test Points Sheet 2, Mictor Connector Test Points Sheet 1

IXD1110 specifications

The Intel IXD1110 is an advanced integrated circuit that serves as a highly efficient and versatile solution for various communication and data processing applications. Built on Intel's cutting-edge technology, the IXD1110 showcases enhanced performance characteristics tailored for modern industrial and embedded systems.

One of the most notable features of the IXD1110 is its robust processing capability. Designed to support high-speed data transfer, this device operates with a clock frequency of up to 500 MHz. Such a high processing speed ensures that the IXD1110 can handle data-heavy applications with ease, making it an ideal choice for real-time data processing tasks.

In terms of connectivity, the IXD1110 boasts multiple communication interfaces. It supports Ethernet, SPI, and I2C protocols, allowing seamless integration into various system architectures. The Ethernet interface ensures high-bandwidth connectivity, giving developers the flexibility to connect the IXD1110 to both wired and wireless networks. This opens up possibilities for IoT (Internet of Things) applications, where reliable and fast communication is critical.

Another standout feature of the IXD1110 is its low-power consumption, which is a significant consideration for embedded systems and battery-powered devices. Intel has implemented advanced power management technologies in the IXD1110, enabling it to operate efficiently while minimizing energy usage. This characteristic not only extends the lifespan of the devices it powers but also reduces overall operational costs.

The IXD1110 also includes advanced security features, catering to the growing demand for secure processing in connected devices. Integrated hardware security mechanisms help safeguard against vulnerabilities and attacks, ensuring data integrity and protecting sensitive information.

Additionally, the IXD1110 is designed for scalability, allowing developers to adapt the device to a wide range of applications, from automotive systems to industrial automation. Its flexible architecture accommodates future upgrades and enhancements, making it a long-term investment for companies looking to future-proof their systems.

In conclusion, the Intel IXD1110 stands out with its high processing speeds, versatile connectivity options, low power consumption, advanced security features, and scalability. These attributes make it a compelling choice for organizations looking to leverage cutting-edge technology in their communication and data processing systems. As industries continue to evolve towards greater connectivity and automation, the IXD1110 is positioned as a key enabler in this technological transformation.