Intelligent Motion Systems MForce Series Microstepping PowerDrive Logic Interface and Connection

Page 37

SECTION 2.4

Logic Interface and Connection

Optically Isolated Logic Inputs

The Microstepping MForce PowerDrive has three optically isolated logic inputs which are located on connector P1. These inputs are isolated to minimize or eliminate electrical noise coupled onto the drive control signals. Each input is internally pulled-up to the level of the optocoupler supply and may be connected to sinking or +5 to +24 VDC sourcing outputs on a controller or PLC. These inputs are:

1] Step Clock (SCLK)/Quadrature (CH A)/Clock UP

2] Direction (DIR)/Quadrature (CH B)/ Clock DOWN

3] Enable (EN)

Of these inputs only step clock and direction are required to operate the Microstepping MForce PowerDrive.

Isolated Logic Input Pins and Connections

The following diagram illustrates the pins and connections for the Microstepping MForce PowerDrive family of products. Careful attention should be paid to verify the connections on the model Microstepping MForce Power- Drive you are using.

Isolated Logic Input Characteristics

Enable Input

This input can be used to enable or disable the driver output circuitry. Leaving the enable switch open (Logic HIGH, Disconnected) for sinking or sourcing configuration, the driver outputs will be enabled and the step clock pulses will cause the motor to advance. When this input switch is closed (Logic LOW) in both sinking

Inputs Configured as Sinking

+5 to +24VDC

Pin 3

Inputs Configured as Sourcing

Pin 3

Controller I/O

Ground

Pin 5: Enable Pin 3: Opto Supply

Pin 4: Step/Clock Pin 6: Direction

Figure 2.4.1: Isolated Logic Pins and Connections

Part 2: Interfacing and Configuring

19

Image 37
Contents Forcetm Microstepping MForce PowerDrive Product Manual Table Of Contents Appendices List of Figures List of Tables MForce PowerDrive Front Microstepping MForce PowerDriveStepping Motor Connect Opto Reference and Logic Inputs Connecting the MotorForcetm Intentionally Left Blank Configuring Introduction to the Microstepping MForce PowerDriveFeatures and Benefits General Specifications Microstepping MForce PowerDrive Detailed SpecificationsMechanical Specifications Dimensions in Inches mm Setup ParametersPin # Function Description Pin Assignment and DescriptionP4 Connector Motor P3 Connector DC Power, 2-Pin Locking Wire CrimpParameter Setup Cable and Adapters Options and AccessoriesPrototype Development Cable Intentionally Left Blank Forcetm Microstepping MForce PowerDrive Manual Revision R040507 Mounting Recommendations Mounting and Connection GuidelinesMounting Hole Pattern Securing Power Leads and Logic LeadsLayout and Interface Guidelines Logic and SPI Communications P1 Power P3Motor P4 Intentionally Left Blank Choosing a Power Supply for Your MForce PowerDrive Interfacing DC PowerISP300-7 Unregulated Switching Supply DC Power Supply RecommendationsRecommended IMS Power Supplies IP804 Unregulated Linear SupplyRecommended Power and Cable Configurations Basic DC Power ConnectionExample a DC Power Cabling Under 50 Feet Transformer 10 to 28 VAC RMS for 48 VDC Systems Selecting a Motor Motor Selection and InterfaceWinding Inductance Types and Construction of Stepping MotorsRecommended IMS Motors Lead Stepping Motor Parallel ConfigurationFrame Enhanced 3.0A Frame Enhanced 2.4A Not Available with Double ShaftFrame Enhanced 6.0A Frame Enhanced 6.3ALead Motors Phase Connector PinPhase a Recommended Motor Cabling MForce PowerDrive Phase OutputsMotor Connections Example a Motor Cabling Less Than 50 FeetRecommended Motor Cable AWG Sizes Example B Motor Cabling Greater Than 50 FeetMicrostepping MForce PowerDrive Manual Revision R040507 Isolated Logic Input Characteristics Isolated Logic Input Pins and ConnectionsEnable Input Logic Interface and ConnectionDirection Step ClockQuadrature Up/DownSTEP/DIRECTION Timing Optocoupler Reference Optocoupler ReferenceInput Connection Examples NPN Open Collector Interface SinkingSwitch Interface Example Switch Interface Sinking+V +12 to +48 Minimum Required ConnectionsConnecting SPI Communications Logic Level Shifting and Conditioning Circuit SPI Pins and Connections4 SPI Master with a Single Microstepping MForce PowerDrive SPI Master with Multiple Microstepping MForce PowerDriveConfiguration Parameters and Ranges Using the IMS SPI Motor Interface InstallationColor Coded Parameter Values File IMS SPI Motor Interface Menu OptionsView Recall UpgradeHelp Msel Microstep Resolution Selection Msel Microstep Resolution SelectFactory Connected/Disconnected IndicatorSet ExitEnable Active High/Low Screen 2 I/O Settings Configuration ScreenInput Clock Type Input Clock FilterIMS Part Number/Serial Number Screen Fault IndicationUpgrade Instructions IMS SPI Upgrader ScreenPort Menu Initialization ScreenSPI Timing Notes Using User-Defined SPICheck Sum Calculation for SPI MSB SPI Commands and ParametersSPI Communications Sequence WriteAppendices Intentionally Left Blank Optional Prototype Development Cables MD-CC300-000 USB to SPI Parameter Setup CableAdapter Cables Installing the Cable/VCP Drivers Installation Procedure for the MD-CC300-000Figure A.5 Hardware Update Wizard Screen Determining the Virtual COM Port VCP Wire Color Code PD12-1434-FL3 Power, I/O and SPIPrototype Development Cable PD04-MF34-FL3 Prototype Development Cable PD02-2300-FL3Warranty Excellence in Motion