Cypress CY7C1413BV18 Application Example, Depth Expansion, Programmable Impedance, Echo Clocks

Page 9

CY7C1411BV18, CY7C1426BV18 CY7C1413BV18, CY7C1415BV18

includes forwarding data from a write cycle that was initiated on the previous K clock rise.

Read accesses and write access must be scheduled such that one transaction is initiated on any clock cycle. If both ports are selected on the same K clock rise, the arbitration depends on the previous state of the SRAM. If both ports were deselected, the read port takes priority. If a read was initiated on the previous cycle, the write port takes priority (as read operations can not be initiated on consecutive cycles). If a write was initiated on the previous cycle, the read port takes priority (as write operations can not be initiated on consecutive cycles). Therefore, asserting both port selects active from a deselected state results in alter- nating read or write operations being initiated, with the first access being a read.

Depth Expansion

The CY7C1413BV18 has a port select input for each port. This enables for easy depth expansion. Both port selects are sampled on the rising edge of the positive input clock only (K). Each port select input can deselect the specified port. Deselecting a port does not affect the other port. All pending transactions (read and write) completes prior to the device being deselected.

Programmable Impedance

An external resistor, RQ, must be connected between the ZQ pin on the SRAM and VSS to allow the SRAM to adjust its output driver impedance. The value of RQ must be 5X the value of the intended line impedance driven by the SRAM. The allowable range of RQ to guarantee impedance matching with a tolerance

of ±15% is between 175Ω and 350Ω, with VDDQ = 1.5V. The output impedance is adjusted every 1024 cycles upon power up to account for drifts in supply voltage and temperature.

Echo Clocks

Echo clocks are provided on the QDR-II to simplify data capture on high-speed systems. Two echo clocks are generated by the QDR-II. CQ is referenced with respect to C and CQ is referenced with respect to C. These are free running clocks and are synchro- nized to the output clock of the QDR-II. In the single clock mode, CQ is generated with respect to K and CQ is generated with respect to K. The timings for the echo clocks are shown in the Switching Characteristics on page 23.

DLL

These chips use a Delay Lock Loop (DLL) that is designed to function between 120 MHz and the specified maximum clock frequency. During power up, when the DOFF is tied HIGH, the DLL gets locked after 1024 cycles of stable clock. The DLL can also be reset by slowing or stopping the input clock K and K for a minimum of 30 ns. However, it is not necessary to reset the DLL to lock to the desired frequency. The DLL automatically locks 1024 clock cycles after a stable clock is presented. The DLL may be disabled by applying ground to the DOFF pin. When the DLL is turned off, the device behaves in QDR-I mode (with one cycle latency and a longer access time). For information refer to the application note “DLL Considerations in QDRII/DDRII”.

Application Example

 

 

 

 

 

 

 

 

 

 

Figure 1 shows four QDR-II used in an application.

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Application Example

 

 

 

 

 

 

 

 

SRAM #1

ZQ

R = 250ohms

 

SRAM #4

ZQ

R = 250ohms

 

Vt

 

R W B

 

CQ/CQ#

 

R W B

 

CQ/CQ#

 

 

 

D

P P W

 

Q

D

P

P W

 

Q

 

 

R

S S S

 

S

S S

 

 

 

A

# # #

C C# K K#

A

# # #

C C# K K#

 

 

DATA IN

 

 

 

 

 

 

 

 

 

 

 

DATA OUT

 

 

 

 

 

Vt

 

 

 

 

 

Address

 

 

 

 

 

Vt

 

 

 

 

BUS

RPS#

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WPS#

 

 

 

 

 

 

 

 

 

 

MASTER

 

 

 

 

 

 

 

 

 

 

BWS#

 

 

 

 

 

 

 

 

 

 

(CPU

 

 

 

 

 

 

 

 

 

 

CLKIN/CLKIN#

 

 

 

 

 

 

 

 

 

 

or

Source K

 

 

 

 

 

 

 

 

 

 

ASIC)

 

 

 

 

 

 

 

 

 

 

Source K#

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Delayed K

 

 

 

 

 

 

 

 

 

 

 

Delayed K#

 

 

 

 

 

 

 

 

 

 

 

R

R = 50ohms

Vt = Vddq/2

 

 

 

 

 

 

 

Document Number: 001-07037 Rev. *D

Page 9 of 30

[+] Feedback

Image 9
Contents Configurations FeaturesFunctional Description Selection GuideLogic Block Diagram CY7C1411BV18 Logic Block Diagram CY7C1426BV18Doff Logic Block Diagram CY7C1415BV18 Logic Block Diagram CY7C1413BV18Ball Fbga 15 x 17 x 1.4 mm Pinout Pin ConfigurationCY7C1411BV18 4M x CY7C1426BV18 4M xCY7C1413BV18 2M x WPS BWSCY7C1415BV18 1M x Pin Name Pin Description Pin DefinitionsPower Supply Inputs for the Outputs of the Device Power Supply Inputs to the Core of the DeviceReferenced with Respect to TDO for JtagFunctional Overview Depth Expansion Application ExampleProgrammable Impedance Echo ClocksWrite Cycle Descriptions Truth TableOperation CommentsBWS0 Ieee 1149.1 Serial Boundary Scan Jtag Idcode TAP Controller State Diagram TAP Electrical Characteristics TAP Controller Block DiagramTAP Timing and Test Conditions TAP AC Switching CharacteristicsScan Register Sizes Identification Register DefinitionsInstruction Codes Register Name Bit SizeBit # Bump ID Boundary Scan OrderPower Up Sequence in QDR-II Sram Power Up SequenceDLL Constraints Electrical Characteristics DC Electrical CharacteristicsMaximum Ratings AC Electrical Characteristics Thermal Resistance CapacitanceParameter Description Test Conditions Max Unit Parameter Description Test Conditions Fbga UnitHigh Switching CharacteristicsLOW RPS, WPSDLL Timing Static to DLL ResetRead/Write/Deselect Sequence 29, 30 Switching WaveformsOrdering Information 250 167 Ball Fbga 15 x 17 x 1.4 mm Package DiagramWorldwide Sales and Design Support Products PSoC Solutions Sales, Solutions, and Legal Information