Texas Instruments TLV1562 Software Overview, if SENDOUTPARALLEL, endif if SAVEINTOMEMORY, SLAA040

Page 90
84SLAA040

Software Overview

@SWWSR

=

#07000h

; one I/O wait states

DP

=

#AD_DP

;

*******************************************

*ADC_dual_con_Start:

*read samples and store them into memory

*******************************************

ADC_dual_con_Start:

repeat(#12)

 

NOP

; wait for t(SAMPLES) (450ns)

STEP6: @CH1_ADSAMPLE = port(ADC)

; read the new sample into the DSP

STEP7: repeat(#20)

 

NOP

; wait for t(CONV1) (about 800ns)

STEP10: @CH2_ADSAMPLE = port(ADC); read the new sample into the DSP

*IMPORTANT: fine–tune the counter number of the next repeat loop in order

*to achive maximum throughput related to the delay of the store instructions STEP11: repeat(#7)

NOP

; wait for t(CONV1) (about 800ns)

STEP12: call STORE

; store the last sample into the table

goto STEP6

; go back to receive next sample

**********************************

*STORE:

*saving the samples into memory

**********************************

STORE:

.if (SEND_OUT_PARALLEL)

* store sample into the parallel buffer location if choosen port(DAC1) = @CH1_ADSAMPLE ; update DAC output with sample one

.endif

.if SAVE_INTO_MEMORY

* store new sample into DSP data memory

*AR7+ = data(@CH1_ADSAMPLE) ; write last sample of channel 1 into memory table *AR6+ = data(@CH2_ADSAMPLE) ; write last sample of channel 2 into memory table

.endif

.if SEND_OUT_SERIAL

* store sample into the serial buffer location

DP

=

#00000h

;

point

to

page zero

TC

=

bitf(@SPC,#01000h)

;

test,

is

the XRDY Bit in SPC=1?

if (TC) goto SEND_SERIAL_END ; don’t send something until XDR is empty

;this has been included because the serial DAC TLC5618A is not able to understand

;endless data–streem (the CS should not become high before end of sending

;the 16th bit)

DP = #AD_DP

; reset Data page pointer to variables

A= @ADSAMPLE<<2 ; leftshift of the sample for a 12 bit format

84SLAA040

Image 90
Contents Application Report JulySLAA040 TParalInteMS3rflelADConvertertotheacing20C54xDSPtheTLV1562IMPORTANT NOTICE Contents 8.5.5 List of Figures List of TablesFigures viSLAA040 2 The Board Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP1 Introduction 2.1 TMS320C54x Starter Kit2.3.1 Suggestions for the ’C54x to TLV1562 Interface 2.2 TLV1562EVM2.3 ADC TLV1562 Overview 2.3.1.1 The Universal InterfaceUsing RD or the CSTART Signal to Start Conversion 2.3.2 Recyclic ArchitectureFigure 2. TLV1562 to ’C54x DSP Interface of the EVM 2.3.3 Note on the Interface, Using an External ADC Clock Drive 2.4 Onboard Components2.4.1 TLC5618A - Serial DAC 2.4.2 THS5651 - Parallel Output CommsDAC Figure 3. TLC5618A to ’C542 DSP InterfaceFigure 4. THS5651 to C542 DSP Interface 3 Operational Overview 3.1 Reference Voltage Inputs3.2 Input Data Bits Table 1. Signal Connections 3.3 Connections Between the DSP and the EVMTable 3. 2-Position Jumpers 3.3.1 Jumpers Used on the TLV1562EVMTable 2. 3-Position Jumpers 8SLAA0404 The Serial DAC/DSP System Table 4. DSP/DAC InterconnectionTable 5. DSP Serial Port Signals and Registers 5 The DSP Serial Port6 Other DSP/TLV1562 Signals 6.1 DSP Internal Serial Port Operation7.1 Writing to the ADC 7.2 Mono Interrupt Driven Mode Using RD7 Conversation Between the TLV1562 and the DSP Table 6. DSP Algorithm for Writing to the ADCTable 7. DSP Algorithm for Mono Interrupt Driven Mode Using RD tDCSL-sample+1ADCSYSCLKtENDATAOUT = 41 ns 7.3 Mono Interrupt Driven Mode Using CSTART Table 8. DSP Algorithm for Mono Interrupt Driven Mode Using CSTART14 SLAA040 7.4 Dual Interrupt Driven Mode Table 9. DSP Algorithm for Dual Interrupt Driven Mode7.5 Mono Continuous Mode Table 10. DSP Algorithm for Mono Continuous Mode16 SLAA040 7.6 Dual Continuous Mode Table 11. DSP Algorithm for Dual Continuous Mode8 Software Overview 8.1 Software Development tools8.2 DSP Memory Map Figure 5. Memory Map 8.3.1 Optimizing CPU Resources for Maximum Data Rates 8.3.3 Timer Output8.3 Programming Strategies for the ’C54x, Explanations 8.3.2 Address and Data Bus for I/O Tasks8.3.5 Generating the Chip Select Signal and the CSTART Signal 8.3.4 Data Page Pointer8.3.6 Interfacing the Serial DAC 5618A to the DSP GOTO MARK 8.3.7 Interrupt Latency8.3.8 Branch Optimization goto/dgoto, call/dcall MARK DP = #1 ARP = #58.3.9 Enabling Software Modules .if/.elseif/.endif 8.4 Software Code Explanation8.4.1 Software Principals of the Interface Advantage 8.4.1.2 Timed Solution8.4.1.1 Software Polling DisadvantageAdvantages 8.4.1.3 Interrupt Driven Solution8.4.1.5 Setting the Right Switches DisadvantagesTable 12. Switch Settings TaskTable 13. Instruction in the Program Header Step Table 14. Instruction in the Program Header Step 8.5 Flow Charts and Comments for All Software Modes8.5.1 The Mono Interrupt Driven Mode Using RD to Start Conversion 8.4.1.6 Common Software for all ModesCode verification Program FilesOther Files common file of all modes constants definitionFigure 6. Software Flow of the Mono Interrupt Driven Solution Includes the complete software algorithm to control the monomode 8.5.2 Mono Interrupt Driven Mode Using CSTART to Start ConversionCalibration procedure of the DAC Common file of all modes constants definitionPoll INTO Pin Until h/0 Transition Occurs Initialize SPISAVE Pull Down CSTART8.5.2.1 Throughput Optimization† This only works for one TLV1562 not multiple because CS is not used8.5.3 Dual Interrupt Driven Mode Figure 8. Time Optimization monocst1Maximum Performance at 1.2 MSPS with Internal Clock IMPORTANT NOTE The code has been optimized to maximize the data throughput. It was found that CSTART can be pulled low earlier than the data read instruction is performed by the DSP. This saves the 100-ns wait time in STEP 3 because the data read requires at least 100 ns. Therefore, CSTART gets pulled high directly after data read, and the interface becomes faster and gains throughput. This variation will be found in the code. The data acquisition is done in a small number of steps that explains everything inside the code Software Overview 8.5.4 Mono Continuous Mode Figure 10. Flow Chart Mono Continuous Mode 8.5.5 Dual Continuous Mode Figure 11. Flow Chart Dual Continuous Mode Program Files 8.6 Source Code 8.6.1 Common Software for all Modes except C-Callable8.6.1.1 Constants.asm set 000C0h Operate without calibrated inputs no offset 42 SLAA0408.6.1.2 Interrupt Vectors 4C internal timer interrupt 44 SLAA040File Linker.lnk COMMAND FILE 8.6.1.3 linker,cmd8.6.1.4 Auto.bat title ”COMMAND FILE FOR TLV1562.ASM”jump address to init. new channel Mainprogram Monomode.asmpointer address when using any of the following variables counter for one channelsent value to register CR0 of the ADC if SENDOUTSERIAL endif if INT0DRIVENPOLLINGDRV48 SLAA040 endif = bit*AR5,15-0 if AUTOPWDNENABLEendif if DIFFINPUTMODE elseif INT0DRIVENelseif NOINT0SIG 52 SLAA040 8.6.3 Calibration of the ADC CALIBRAT.ASM54 SLAA040 if SMECALIBRATION 56 SLAA040 endif 58 SLAA040 Software Overview 60 SLAA040 if INT0DRIVENPOLLINGDRV 62 SLAA040 = bit*AR5,15-0 endif if SAVEINTOMEMORY 64 SLAA040Software Overview Interrupt Routine handler - see 8.6.1.2 Interrupt Vectors 8.6.5 Dual Interrupt Driven ModeConstants definition - see 8.6.1.1 Constants.asm Mainprogram DUALIRQ1.asmSoftware Overview Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSPSoftware Overview if SENDOUTSERIALSoftware Overview 70 SLAA040 endif 72 SLAA040 if SAVEINTOMEMORY 8.6.6 Mono Continuous Mode Mainprogram MONOCON1.asm74 SLAA040 Software Overview 76 SLAA040 endif if EXTERNALCLOCK 78 SLAA040 endif 8.6.7 Dual Continuous Mode Mainprogram DUALCON1.asm80 SLAA040 Software Overview 82 SLAA040 endif if DIFFINPUTMODE 84 SLAA040 Software Overview TLV1562Channel, Save Memory Start address, NUMBEROFSAMPLES 8.6.8 C-CallableMainprogram C1562.c 80h samples of channel 1 will be stored beginning on 2000hSoftware Overview 88 SLAA040 AR7+ = data@ADSAMPLE Vectors.asm 90 SLAA040int2 returnenable 48 external interrupt int2 nop Auto.bat Linker.cmd92 SLAA040 9 Summary 10 References