Carrier 50TCA04-A07 appendix Normal State, Alarm State, Detector Indicators

Page 19

 

Table 3 – Detector Indicators

 

 

CONTROL OR INDICATOR

DESCRIPTION

Magnetic test/reset switch

Resets the sensor when it is in the alarm or trouble state. Activates or tests the sensor when it is in

 

the normal state.

 

 

Alarm LED

Indicates the sensor is in the alarm state.

 

 

Trouble LED

Indicates the sensor is in the trouble state.

 

 

Dirty LED

Indicates the amount of environmental compensation used by the sensor

 

(flashing continuously = 100%)

 

 

Power LED

Indicates the sensor is energized.

 

 

!CAUTION

OPERATIONAL TEST HAZARD

Failure to follow this caution may result in personnel and authority concern.

If the smoke detector is connected to a fire alarm system, first notify the proper authorities that the detector is undergoing maintenance then disable the relevant circuit to avoid generating a false alarm.

1.Disconnect power from the duct detector then remove the sensor’s cover. (See Fig. 25.)

2.Using a vacuum cleaner, clean compressed air, or a soft bristle brush, remove loose dirt and debris from inside the sensor housing and cover.

Use isopropyl alcohol and a lint-free cloth to remove dirt and other contaminants from the gasket on the sensor’s cover.

3.Squeeze the retainer clips on both sides of the optic housing then lift the housing away from the printed circuit board.

4.Gently remove dirt and debris from around the optic plate and inside the optic housing.

5.Replace the optic housing and sensor cover.

6.Connect power to the duct detector then perform a sensor alarm test.

INDICATORS

Normal State

The smoke detector operates in the normal state in the absence of any trouble conditions and when its sensing chamber is free of smoke. In the normal state, the Power LED on both the sensor and the controller are on and all other LEDs are off.

Alarm State

The smoke detector enters the alarm state when the amount of smoke particulate in the sensor’s sensing chamber exceeds the alarm threshold value. (See Table 3.) Upon entering the alarm state:

SThe sensor’s Alarm LED and the controller’s Alarm LED turn on.

S The contacts on the controller’s two auxiliary relays switch positions.

S The contacts on the controller’s alarm initiation relay close.

S The controller’s remote alarm LED output is activated (turned on).

S The controller’s high impedance multiple fan shutdown control line is pulled to ground Trouble state.

The SuperDuct duct smoke detector enters the trouble state under the following conditions:

50TC

Sampling tube

Airflow

HVAC duct

Sensor housing

Optic plate

Retainer clip

Optic housing

S A sensor’s cover is removed and 20 minutes pass before it is properly secured.

S A sensor’s environmental compensation limit is reached (100% dirty).

S A wiring fault between a sensor and the controller is detected.

An internal sensor fault is detected upon entering the trouble state:

S The contacts on the controller’s supervisory relay switch positions. (See Fig. 26.)

C07305

Fig. 25 - Sensor Cleaning Diagram

S If a sensor trouble, the sensor’s Trouble LED the controller’s Trouble LED turn on.

S If 100% dirty, the sensor’s Dirty LED turns on and the controller’s Trouble LED flashes continuously.

19

Image 19
Contents Safety Considerations Table of ContentsGeneral Unit Arrangement and AccessRoutine Maintenance Seasonal MaintenanceSupply Fan Belt-Drive Supply FAN Blower SectionSupply-Fan Pulley Adjustment Bearings Adjustable-Pitch Pulley on MotorCooling Condenser Coil Maintenance and Cleaning RecommendationCondenser Coil Two-Row Coils Cleaning Condenser CoilRefrigerant Charge Refrigerant System Pressure Access PortsPuronr R-410A Refrigerant Evaporator CoilCoreMax Access Port Assembly To Use Cooling Charging ChartsCooling Charging Charts Cooling Charging ChartsCooling Charging Charts Condenser-Fan Location Troubleshooting Cooling SystemCompressor Filter DrierProblem Cause Remedy Cooling Service AnalysisSmoke Detectors Convenience OutletsController SystemSensor Smoke Detector Locations Completing Installation of Return Air Smoke SensorReturn Air Sensor Operating Position Fiop Smoke Detector Wiring and ResponseDirty Sensor Test Sensor and Controller Tests Sensor Alarm TestController Alarm Test Dirty Controller TestChanging the Dirt Sensor Test Detector CleaningRemote Test/Reset Station Dirty Sensor Test Cleaning the Smoke DetectorControl or Indicator Description IndicatorsAlarm State Detector IndicatorsProtective Devices TroubleshootingCondenser Fan Motor Protection Electric HeatersRelief Device Control CircuitTypical Single Point Installation Completing Heater InstallationPremierLink Controller Premierlinkt ControlPremierLink Wiring Schematic Temp Resistance 55 Space Temperature Sensor WiringPremierLink Sensor Usage Temperature Enthalpy SensorOutdoor AIR Return AIR TB1 Terminal Field Connection Input Signal Space Sensor ModeThermostat Mode Field Connection Input SignalLctb Outside and Return Air Enthalpy Sensor Wiring Tions Indoor CO2 Sensor 33ZCSENCO2 ConnecManufacturer CCN BUS Wire CCN Plug PIN Color NumberRecommended Cables Color Code RecommendationsPremierLink CCN Bus Connections Economizer SystemsRUN Inputs OutputsEconoMi$er IV Control Modes Supply Air Temperature SAT SensorEconoMi$er Outdoor Air Lockout SensorOutdoor Enthalpy Changeover Differential Dry Bulb ControlIndoor Air Quality IAQ Sensor Input Enthalpy Changeover SetpointsThermostats Exhaust Setpoint AdjustmentMinimum Position Control Damper MovementDemand Control Ventilation DCV CO2 Sensor ConfigurationEconoMi$er IV Sensor Usage Single Enthalpy DCV Demand Controlled Ventilation and Power ExhaustEconoMi$er IV Preparation Differential EnthalpyEconoMi$er IV Troubleshooting Completion Wiring DiagramsPRE-START-UP START-UP, Premierlink Controls START-UP, GeneralOperating Sequence, Base Unit Controls Memory ResetPerform System Check-Out Initial Operation and TestOperating Sequence, PremierLink Control 50TC Number Stages Economizer Available Cooling StagesOAT ≤ SPT 50TC 50TC Fastener Torque Values Loadshed Command Gas and Electric Heat UnitsLinkage Modes Torque Values 50TC Typical Unit Wiring diagram Power A0650TC Unit Wiring Diagram Control A06 Position Number Typical Designates Appendix I. Model Number SignificanceModel Number Nomenclature Serial Number FormatPhysical Data Cooling Tons Appendix II. Physical DataGeneral Fan Performance Notes Appendix III. FAN PerformanceTon Vertical Supply Ton Horizontal SupplyCFM RPM BHP 554 Standard Static Option1206 11701165 1225 121550TC**05 Phase Ton Horizontal Supply 765 724Phase Ton Horizontal Supply 974 1067 822 927 1018872 973 1061 923 1019Unit MOTOR/DRIVE Motor Pulley Turns Open Combo Pulley AdjustmentAppendix IV. Electrical Data FLA Appendix IV. Electrical DataMCA/MOCP Determination no C.O. or Unpwrd C.O 78/89 MCA/MOCP Determination no C.O. or Unpwrd C.O.152 159 Wiring Diagrams Appendix V. Wiring Diagram List50TC*A04 Outdoor Circuiting Appendix VI. Motormaster Sensor LocationsAppendix VI. cont Motormaster Sensor Locations Catalog No 50TC---1SM Pressures Cooling Mode START-UP ChecklistRemove and Store in Job File

50TCA04-A07 specifications

The Carrier 50TCA04-A07 is a prominent model from Carrier, a leader in the heating, ventilation, and air conditioning (HVAC) industry. Designed for commercial applications, this unit exemplifies advanced technology and reliability, catering to a wide array of cooling needs.

One of the most notable features of the Carrier 50TCA04-A07 is its high efficiency. With a cooling capacity that suits various settings, it is engineered to provide excellent performance with minimal energy consumption. The unit achieves impressive Seasonal Energy Efficiency Ratio (SEER) ratings, which not only reduce operational costs but also lower the environmental impact.

The Carrier 50TCA04-A07 employs state-of-the-art inverter technology. This innovation allows the compressor to operate at varying speeds, adjusting its output according to the cooling demand. Consequently, the system can maintain optimal comfort levels while using less energy. Additionally, the inverter technology contributes to quieter operation, making it a suitable choice for environments where noise is a concern.

Durability is a hallmark of the Carrier 50TCA04-A07. Constructed with robust materials, this model is designed to withstand harsh conditions and ensure long-term reliability. The unit is equipped with corrosion-resistant components, extending its lifespan and maintaining performance quality over time.

Another significant characteristic of the Carrier 50TCA04-A07 is its advanced control system. The integrated control panel provides easy access to performance settings and monitoring capabilities. Users can effortlessly adjust temperatures and modes, ensuring a customizable climate. Furthermore, compatibility with smart building management systems enhances operational efficiency and real-time monitoring.

Regarding safety features, the Carrier 50TCA04-A07 is equipped with multiple sensors and automated responses to prevent overheating and ensure safe operation. These safety mechanisms not only protect the unit but also contribute to the overall safety of the installation environment.

In summary, the Carrier 50TCA04-A07 is a highly efficient, durable, and technologically advanced HVAC solution for commercial spaces. Its innovative features, including inverter technology, robust construction, and smart control systems, set it apart in the market, making it a reliable choice for businesses seeking to optimize their climate control needs while minimizing energy consumption and operational costs.