Carrier 50TCA04-A07 Wiring Diagrams, Pre-Start-Up, EconoMi$er IV Troubleshooting Completion

Page 40

50TC

2.Set the Enthalpy potentiometer to A. The Free Cool LED turns on. The actuator should drive to between 20 and 80% open.

3.Remove the 5.6 kilo-ohm resistor and jumper T to T1. The actuator should drive fully open.

4.Remove the jumper across T and T1. The actuator should drive fully closed.

5.Return EconoMi$er IV settings and wiring to normal after completing troubleshooting.

EconoMi$er IV Troubleshooting Completion

This procedure is used to return the EconoMi$er IV to operation. No troubleshooting or testing is done by performing the following procedure.

1.Disconnect power at TR and TR1.

2.Set enthalpy potentiometer to previous setting.

3.Set DCV maximum position potentiometer to previ- ous setting.

4.Set minimum position, DCV setpoint, and exhaust po- tentiometers to previous settings.

5.Remove 620-ohm resistor from terminals SR and +.

6.Remove 1.2 kilo-ohm checkout resistor from termin- als SO and +. If used, reconnect sensor from termin- als SO and +.

7.Remove jumper from TR to N.

8.Remove jumper from TR to 1.

9.Remove 5.6 kilo-ohm resistor from T and T1. Recon- nect wires at T and T1.

10.Remove jumper from P to P1. Reconnect device at P and P1.

11.Apply power (24 vac) to terminals TR and TR1.

WIRING DIAGRAMS

See Fig. 65-66 for typical wiring diagrams.

PRE-START-UP

!WARNING

PERSONAL INJURY HAZARD

Failure to follow this warning could result in personal injury or death.

1.Follow recognized safety practices and wear pro- tective goggles when checking or servicing refri- gerant system.

2.Do not operate compressor or provide any electric power to unit unless compressor terminal cover is in place and secured.

3.Do not remove compressor terminal cover until all electrical sources are disconnected.

4.Relieve all pressure from system before touching or disturbing anything inside terminal box if refri- gerant leak is suspected around compressor ter- minals.

5.Never attempt to repair soldered connection while refrigerant system is under pressure.

6.Do not use torch to remove any component. Sys- tem contains oil and refrigerant under pressure. To remove a component, wear protective goggles and proceed as follows:

a.Shut off electrical power to unit.

b.Recover refrigerant to relieve all pressure from system using both high-pressure and low pressure ports.

c.Cut component connection tubing with tubing cutter and remove component from unit.

d.Carefully unsweat remaining tubing stubs when necessary. Oil can ignite when exposed to torch flame.

Proceed as follows to inspect and prepare the unit for initial start-up:

1.Remove all access panels.

2.Read and follow instructions on all WARNING, CAUTION, and INFORMATION labels attached to, or shipped with, unit.

3.Make the following inspections:

a.Inspect for shipping and handling damages such as broken lines, loose parts, or disconnected wires, etc.

b.Inspect for oil at all refrigerant tubing connec- tions and on unit base. Detecting oil generally indicates a refrigerant leak. Leak-test all refri- gerant tubing connections using electronic leak detector, halide torch, or liquid-soap solution.

c.Inspect all field-wiring and factory-wiring con- nections. Be sure that connections are completed and tight. Be sure that wires are not in contact with refrigerant tubing or sharp edges.

d.Inspect coil fins. If damaged during shipping and handling, carefully straighten fins with a fin comb.

40

Image 40
Contents Table of Contents Safety ConsiderationsUnit Arrangement and Access Routine MaintenanceSeasonal Maintenance GeneralSupply FAN Blower Section Supply Fan Belt-DriveAdjustable-Pitch Pulley on Motor Supply-Fan Pulley Adjustment BearingsCooling Condenser Coil Maintenance and Cleaning RecommendationCondenser Coil Cleaning Condenser Coil Two-Row CoilsRefrigerant System Pressure Access Ports Puronr R-410A RefrigerantEvaporator Coil Refrigerant ChargeTo Use Cooling Charging Charts CoreMax Access Port AssemblyCooling Charging Charts Cooling Charging ChartsCooling Charging Charts Troubleshooting Cooling System CompressorFilter Drier Condenser-Fan LocationCooling Service Analysis Problem Cause RemedyConvenience Outlets Smoke DetectorsController SystemSensor Completing Installation of Return Air Smoke Sensor Smoke Detector LocationsFiop Smoke Detector Wiring and Response Return Air Sensor Operating PositionSensor and Controller Tests Sensor Alarm Test Controller Alarm TestDirty Controller Test Dirty Sensor TestDetector Cleaning Remote Test/Reset Station Dirty Sensor TestCleaning the Smoke Detector Changing the Dirt Sensor TestIndicators Alarm StateDetector Indicators Control or Indicator DescriptionTroubleshooting Protective DevicesElectric Heaters Relief DeviceControl Circuit Condenser Fan Motor ProtectionCompleting Heater Installation Typical Single Point InstallationPremierlinkt Control PremierLink ControllerPremierLink Wiring Schematic 55 Space Temperature Sensor Wiring Temp ResistancePremierLink Sensor Usage Temperature Enthalpy SensorOutdoor AIR Return AIR Space Sensor Mode Thermostat ModeField Connection Input Signal TB1 Terminal Field Connection Input SignalLctb Outside and Return Air Enthalpy Sensor Wiring Indoor CO2 Sensor 33ZCSENCO2 Connec TionsCCN BUS Wire CCN Plug PIN Color Number Recommended CablesColor Code Recommendations ManufacturerEconomizer Systems PremierLink CCN Bus ConnectionsInputs Outputs RUNSupply Air Temperature SAT Sensor EconoMi$erOutdoor Air Lockout Sensor EconoMi$er IV Control ModesDifferential Dry Bulb Control Outdoor Enthalpy ChangeoverEnthalpy Changeover Setpoints Indoor Air Quality IAQ Sensor InputExhaust Setpoint Adjustment Minimum Position ControlDamper Movement ThermostatsDemand Control Ventilation DCV CO2 Sensor ConfigurationEconoMi$er IV Sensor Usage DCV Demand Controlled Ventilation and Power Exhaust EconoMi$er IV PreparationDifferential Enthalpy Single EnthalpyEconoMi$er IV Troubleshooting Completion Wiring DiagramsPRE-START-UP START-UP, General START-UP, Premierlink ControlsMemory Reset Perform System Check-OutInitial Operation and Test Operating Sequence, Base Unit ControlsOperating Sequence, PremierLink Control 50TC Available Cooling Stages Number Stages EconomizerOAT ≤ SPT 50TC 50TC Fastener Torque Values Loadshed Command Gas and Electric Heat UnitsLinkage Modes 50TC Typical Unit Wiring diagram Power A06 Torque Values50TC Unit Wiring Diagram Control A06 Appendix I. Model Number Significance Model Number NomenclatureSerial Number Format Position Number Typical DesignatesAppendix II. Physical Data Physical Data Cooling TonsAppendix III. FAN Performance General Fan Performance NotesTon Vertical Supply Ton Horizontal SupplyCFM RPM BHP Standard Static Option 5541170 1165 12251215 120650TC**05 Phase Ton Horizontal Supply 724 765Phase Ton Horizontal Supply 822 927 1018 872 973 1061923 1019 974 1067Pulley Adjustment Unit MOTOR/DRIVE Motor Pulley Turns Open ComboAppendix IV. Electrical Data Appendix IV. Electrical Data FLAMCA/MOCP Determination no C.O. or Unpwrd C.O MCA/MOCP Determination no C.O. or Unpwrd C.O. 78/89152 159 Appendix V. Wiring Diagram List Wiring DiagramsAppendix VI. Motormaster Sensor Locations 50TC*A04 Outdoor CircuitingAppendix VI. cont Motormaster Sensor Locations Catalog No 50TC---1SM Pressures Cooling Mode START-UP ChecklistRemove and Store in Job File

50TCA04-A07 specifications

The Carrier 50TCA04-A07 is a prominent model from Carrier, a leader in the heating, ventilation, and air conditioning (HVAC) industry. Designed for commercial applications, this unit exemplifies advanced technology and reliability, catering to a wide array of cooling needs.

One of the most notable features of the Carrier 50TCA04-A07 is its high efficiency. With a cooling capacity that suits various settings, it is engineered to provide excellent performance with minimal energy consumption. The unit achieves impressive Seasonal Energy Efficiency Ratio (SEER) ratings, which not only reduce operational costs but also lower the environmental impact.

The Carrier 50TCA04-A07 employs state-of-the-art inverter technology. This innovation allows the compressor to operate at varying speeds, adjusting its output according to the cooling demand. Consequently, the system can maintain optimal comfort levels while using less energy. Additionally, the inverter technology contributes to quieter operation, making it a suitable choice for environments where noise is a concern.

Durability is a hallmark of the Carrier 50TCA04-A07. Constructed with robust materials, this model is designed to withstand harsh conditions and ensure long-term reliability. The unit is equipped with corrosion-resistant components, extending its lifespan and maintaining performance quality over time.

Another significant characteristic of the Carrier 50TCA04-A07 is its advanced control system. The integrated control panel provides easy access to performance settings and monitoring capabilities. Users can effortlessly adjust temperatures and modes, ensuring a customizable climate. Furthermore, compatibility with smart building management systems enhances operational efficiency and real-time monitoring.

Regarding safety features, the Carrier 50TCA04-A07 is equipped with multiple sensors and automated responses to prevent overheating and ensure safe operation. These safety mechanisms not only protect the unit but also contribute to the overall safety of the installation environment.

In summary, the Carrier 50TCA04-A07 is a highly efficient, durable, and technologically advanced HVAC solution for commercial spaces. Its innovative features, including inverter technology, robust construction, and smart control systems, set it apart in the market, making it a reliable choice for businesses seeking to optimize their climate control needs while minimizing energy consumption and operational costs.