Carrier 50TCA04-A07 appendix Sensor and Controller Tests Sensor Alarm Test, Controller Alarm Test

Page 17

Sensor and Controller Tests

Sensor Alarm Test

The sensor alarm test checks a sensor’s ability to signal an alarm state. This test requires that you use a field provided SD-MAG test magnet.

!CAUTION

OPERATIONAL TEST HAZARD

Failure to follow this caution may result in personnel and authority concern.

This test places the duct detector into the alarm state. Unless part of the test, disconnect all auxiliary equipment from the controller before performing the test. If the duct detector is connected to a fire alarm system, notify the proper authorities before performing the test.

Sensor Alarm Test Procedure

1.Hold the test magnet where indicated on the side of the sensor housing for seven seconds.

2.Verify that the sensor’s Alarm LED turns on.

3.Reset the sensor by holding the test magnet against the sensor housing for two seconds.

4.Verify that the sensor’s Alarm LED turns off.

Controller Alarm Test

The controller alarm test checks the controller’s ability to initiate and indicate an alarm state.

!CAUTION

OPERATIONAL TEST HAZARD

Failure to follow this caution may result in personnel and authority concern.

This test places the duct detector into the alarm state. Disconnect all auxiliary equipment from the controller before performing the test. If the duct detector is connected to a fire alarm system, notify the proper authorities before performing the test.

Controller Alarm Test Procedure

1.Press the controller’s test/reset switch for seven seconds.

2.Verify that the controller’s Alarm LED turns on.

3.Reset the sensor by pressing the test/reset switch for two seconds.

4.Verify that the controller’s Alarm LED turns off.

Dirty Controller Test

The dirty controller test checks the controller’s ability to initiate a dirty sensor test and indicate its results.

!CAUTION

OPERATIONAL TEST HAZARD

Failure to follow this caution may result in personnel and authority concern.

Pressing the controller’s test/reset switch for longer than seven seconds will put the duct detector into the alarm state and activate all automatic alarm responses.

Dirty Controller Test Procedure

1.Press the controller’s test/reset switch for two seconds.

2.Verify that the controller’s Trouble LED flashes.

Dirty Sensor Test

The dirty sensor test provides an indication of the sensor’s ability to compensate for gradual environmental changes. A sensor that can no longer compensate for environmental changes is considered 100% dirty and requires cleaning or replacing. You must use a field provided SD-MAG test magnet to initiate a sensor dirty test. The sensor’s Dirty LED indicates the results of the dirty test as shown in Table 2.

!CAUTION

OPERATIONAL TEST HAZARD

Failure to follow this caution may result in personnel and authority concern.

Holding the test magnet against the sensor housing for more than seven seconds will put the duct detector into the alarm state and activate all automatic alarm responses.

 

Table 2 – Dirty LED Test

 

 

FLASHES

DESCRIPTION

 

 

1

0--- 25% dirty. (Typical of a newly installed detector)

 

 

2

25--- 50% dirty

 

 

3

51--- 75% dirty

 

 

4

76--- 99% dirty

 

 

Dirty Sensor Test Procedure

1.Hold the test magnet where indicated on the side of the sensor housing for two seconds.

2.Verify that the sensor’s Dirty LED flashes.

!CAUTION

OPERATIONAL TEST HAZARD

Failure to follow this caution may result in personnel and authority concern.

Changing the dirty sensor test operation will put the detector into the alarm state and activate all automatic alarm responses. Before changing dirty sensor test operation, disconnect all auxiliary equipment from the controller and notify the proper authorities if connected to a fire alarm system.

50TC

17

Image 17
Contents Safety Considerations Table of ContentsRoutine Maintenance Unit Arrangement and AccessSeasonal Maintenance GeneralSupply Fan Belt-Drive Supply FAN Blower SectionSupply-Fan Pulley Adjustment Bearings Adjustable-Pitch Pulley on MotorCondenser Coil Condenser Coil Maintenance and Cleaning RecommendationCooling Two-Row Coils Cleaning Condenser CoilPuronr R-410A Refrigerant Refrigerant System Pressure Access PortsEvaporator Coil Refrigerant ChargeCoreMax Access Port Assembly To Use Cooling Charging ChartsCooling Charging Charts Cooling Charging ChartsCooling Charging Charts Compressor Troubleshooting Cooling SystemFilter Drier Condenser-Fan LocationProblem Cause Remedy Cooling Service AnalysisSmoke Detectors Convenience OutletsSensor SystemController Smoke Detector Locations Completing Installation of Return Air Smoke SensorReturn Air Sensor Operating Position Fiop Smoke Detector Wiring and ResponseController Alarm Test Sensor and Controller Tests Sensor Alarm TestDirty Controller Test Dirty Sensor TestRemote Test/Reset Station Dirty Sensor Test Detector CleaningCleaning the Smoke Detector Changing the Dirt Sensor TestAlarm State IndicatorsDetector Indicators Control or Indicator DescriptionProtective Devices TroubleshootingRelief Device Electric HeatersControl Circuit Condenser Fan Motor ProtectionTypical Single Point Installation Completing Heater InstallationPremierLink Controller Premierlinkt ControlPremierLink Wiring Schematic Temp Resistance 55 Space Temperature Sensor WiringOutdoor AIR Return AIR Temperature Enthalpy SensorPremierLink Sensor Usage Thermostat Mode Space Sensor ModeField Connection Input Signal TB1 Terminal Field Connection Input SignalLctb Outside and Return Air Enthalpy Sensor Wiring Tions Indoor CO2 Sensor 33ZCSENCO2 ConnecRecommended Cables CCN BUS Wire CCN Plug PIN Color NumberColor Code Recommendations ManufacturerPremierLink CCN Bus Connections Economizer SystemsRUN Inputs OutputsEconoMi$er Supply Air Temperature SAT SensorOutdoor Air Lockout Sensor EconoMi$er IV Control ModesOutdoor Enthalpy Changeover Differential Dry Bulb ControlIndoor Air Quality IAQ Sensor Input Enthalpy Changeover SetpointsMinimum Position Control Exhaust Setpoint AdjustmentDamper Movement ThermostatsEconoMi$er IV Sensor Usage CO2 Sensor ConfigurationDemand Control Ventilation DCV EconoMi$er IV Preparation DCV Demand Controlled Ventilation and Power ExhaustDifferential Enthalpy Single EnthalpyPRE-START-UP Wiring DiagramsEconoMi$er IV Troubleshooting Completion START-UP, Premierlink Controls START-UP, GeneralPerform System Check-Out Memory ResetInitial Operation and Test Operating Sequence, Base Unit ControlsOperating Sequence, PremierLink Control 50TC Number Stages Economizer Available Cooling StagesOAT ≤ SPT 50TC 50TC Linkage Modes Loadshed Command Gas and Electric Heat UnitsFastener Torque Values Torque Values 50TC Typical Unit Wiring diagram Power A0650TC Unit Wiring Diagram Control A06 Model Number Nomenclature Appendix I. Model Number SignificanceSerial Number Format Position Number Typical DesignatesPhysical Data Cooling Tons Appendix II. Physical DataGeneral Fan Performance Notes Appendix III. FAN PerformanceCFM RPM BHP Ton Horizontal SupplyTon Vertical Supply 554 Standard Static Option1165 1225 11701215 120650TC**05 Phase Ton Horizontal Supply 765 724Phase Ton Horizontal Supply 872 973 1061 822 927 1018923 1019 974 1067Unit MOTOR/DRIVE Motor Pulley Turns Open Combo Pulley AdjustmentAppendix IV. Electrical Data FLA Appendix IV. Electrical DataMCA/MOCP Determination no C.O. or Unpwrd C.O 78/89 MCA/MOCP Determination no C.O. or Unpwrd C.O.152 159 Wiring Diagrams Appendix V. Wiring Diagram List50TC*A04 Outdoor Circuiting Appendix VI. Motormaster Sensor LocationsAppendix VI. cont Motormaster Sensor Locations Catalog No 50TC---1SM Remove and Store in Job File START-UP ChecklistPressures Cooling Mode

50TCA04-A07 specifications

The Carrier 50TCA04-A07 is a prominent model from Carrier, a leader in the heating, ventilation, and air conditioning (HVAC) industry. Designed for commercial applications, this unit exemplifies advanced technology and reliability, catering to a wide array of cooling needs.

One of the most notable features of the Carrier 50TCA04-A07 is its high efficiency. With a cooling capacity that suits various settings, it is engineered to provide excellent performance with minimal energy consumption. The unit achieves impressive Seasonal Energy Efficiency Ratio (SEER) ratings, which not only reduce operational costs but also lower the environmental impact.

The Carrier 50TCA04-A07 employs state-of-the-art inverter technology. This innovation allows the compressor to operate at varying speeds, adjusting its output according to the cooling demand. Consequently, the system can maintain optimal comfort levels while using less energy. Additionally, the inverter technology contributes to quieter operation, making it a suitable choice for environments where noise is a concern.

Durability is a hallmark of the Carrier 50TCA04-A07. Constructed with robust materials, this model is designed to withstand harsh conditions and ensure long-term reliability. The unit is equipped with corrosion-resistant components, extending its lifespan and maintaining performance quality over time.

Another significant characteristic of the Carrier 50TCA04-A07 is its advanced control system. The integrated control panel provides easy access to performance settings and monitoring capabilities. Users can effortlessly adjust temperatures and modes, ensuring a customizable climate. Furthermore, compatibility with smart building management systems enhances operational efficiency and real-time monitoring.

Regarding safety features, the Carrier 50TCA04-A07 is equipped with multiple sensors and automated responses to prevent overheating and ensure safe operation. These safety mechanisms not only protect the unit but also contribute to the overall safety of the installation environment.

In summary, the Carrier 50TCA04-A07 is a highly efficient, durable, and technologically advanced HVAC solution for commercial spaces. Its innovative features, including inverter technology, robust construction, and smart control systems, set it apart in the market, making it a reliable choice for businesses seeking to optimize their climate control needs while minimizing energy consumption and operational costs.