Friedrich Comprehensive Guide to Replacing the Indoor Coil Thermistor in Air Conditioners

Page 32

REPLACING THE INDOOR COIL THERMISTOR

WARNING

ELECTRIC SHOCK HAZARD

Disconnect power to the unit before servicing. Failure to follow this warning could result in serious injury or death.

Remove the decorative front cover (see page 30). Remove all indicated screws below (8 total, see figure below). Remove the Discharge Sensor and the User Interface plugs from the control board.

Remove the screws indicated at the side and back plate (6 total, see figure below). Partially lift the top cover and at the same time carefully swing out from the top, the back and side plate.

Up

Swing

Out

Replace the indoor coil sensor. Ensure to properly clip and insulate it at the same location (see figure below).

REPLACING THE CONTROL BOARD

WARNING

ELECTRIC SHOCK HAZARD

Disconnect power to the unit before servicing. Failure to follow this warning could result in serious injury or death.

Remove the decorative front cover (see page 30). Disconnect discharge sensor plug (red) Disconnect the User Interface plug (white) Remove the 3 screws indicated below.

Pull control board and mount plate out and disconnect the following connectors from it:

Power, capacitor, thermistors, fan, reversing valve and heater.

Remove the hex screw holding the control board to its mount plate. Pull out the control board (see figure below).

31

Image 32
Contents Cool Only Cool with Electric HeatHeat Pump with Electric Heat Heat Pump Volt YS10M10Table Of Contents Important Safety Information Your safety and the safety of others are very importantRefrigeration System Repair Hazards Property Damage Hazards Introduction Model and Serial Number LocationUnit Identification Specifications Performance DataInstallation Information / Sleeve Dimensions Fire Hazard Electrical DataElectric Shock Hazard Make sure the wiring is adequate for your unit Control Panel Operation Special Functions System Exit Back FAN Mode Speed Display Schedule Enter Digital Control Panels Access Codes Summary Key Sequence ActionRemote Control Operation Remote Control Operation Electronic Control System Maintenance IntroductionElectronic Control System Maintenance Operation Test mode Bypasses Following functions Can be TestedTo Clear Error Codes’ History Factory USE onlyUnit Operation Front PanelCOOL-HEAT SET Points System Set Point Mapping FigureElectronic Control Sequence of Operation Compressor OperationHeating Mode Control Operation Heat Control Heat Pump OnlyHeat Pump With Electric Heat Operation ConditionElectric Heat Operation in Cool with Electric Heat Units Compressor Lock Out Time Fan Mapping During Heat Mode Unit Operation with a WALL-STATRemoving the Front Cover Replacing the Indoor Coil Thermistor Swing OutConnecting a Remote Wall Thermostat Remote Wall Thermostat Location Components Testing CapacitorsCapacitor Check with Capacitor Analyzer Capacitor ConnectionsTesting the Heating Element Electric Shock Hazard Heating ElementHeating Element Heat Pump Models Drain PAN ValveRefrigeration Sequence of Operation 410A Sealed System Repair Considerations Refrigeration system under high pressure410A Sealed Refrigeration System Repairs Equipment RequiredEquipment Must be Capable Risk of Electric ShockFreeze Hazard Method Of Charging / RepairsBurn Hazard Undercharged Refrigerant Systems Overcharged Refrigerant SystemsRestricted Refrigerant System Hermetic Components Check Metering DeviceCheck Valve Capillary Tube SystemsReversing Valve DESCRIPTION/OPERATION Checking the Reversing Valve Testing the Reversing Valve Solenoid CoilReversing Valve in Heating Mode Explosion Hazard Procedure For Changing Reversing ValveTouch Test in Heating/Cooling Cycle Compressor Checks Checking Compressor Efficiency Single Phase Resistance TestGround Test High Temperatures Compressor ReplacementRecommended procedure for compressor replacement High Pressure Hazard Routine Maintenance Clearances Sleeve / DrainDecorative Front Cover Standard Filter Cleaning Installation Instructions Control Panel Battery Change Procedure Battery type Lithium, 3 Volts, #CR2450Service and Assistance Room AIR Conditioner Unit Performance Test Data Sheet Error Codes and Alarm Status IconTroubleshooting Tips Problem Possible Cause Possible SolutionTroubleshooting Tips Cooling only Room AIR Conditioners Troubleshooting Tips Problem Possible Cause Possible SolutionReplace fuse, reset breaker. If repeats, check Possible Cause Possible Solution Problem Possible Cause Possible Solution Heat / Cool only Room AIR Conditioners Troubleshooting Tips Bad outdoor coil thermistor Replace thermistorProblem Possible Cause Action Heat Pump Room AIR Conditioners Trouble Shooting TipsTroubleshooting Chart Heat Pump Electrical Troubleshooting Chart Heat Pump System Cools When Heating is DesiredHeat Pump YESNormal Function of Valve Malfunction of ValveElectronic Control Board Components Identification DischargeRemote Wall Thermostat Wiring Diagrams Cool W/O Electric HeatSchematic Kuhl Electronic Control Cool only ModelsSL28M30A, SL36M30A KUHL+ Electronic Control Cool with Electric Heat Models ES12M33A, ES15M33A EM18M34A, EM24M34AKUHL+ Electronic Control Cool with Electric Heat Model EL36M35AKUHL+ Electronic Control Heat Pump only Model YS10M10AHeat KUHL+ Electronic Control Heat Pump with Electric Heat Model YL24M35ATHERMISTORS’ Resistance Values This Table Applies to All ThermistorsReplacement Remote Control Configuration Instructions Checking the Remote Control’s OPT # Code Replacement Instructions Aham PUB. NO. RAC-1 DAY Cooling Load Estimate FormHeat Gain from Quantity Factors Following is an example using the heat load form Heat Load FormInfiltration Windows & Doors AVG Heating Load Form Friedrich Room Unit Heat PumpsWindows & Doors Area, sq. ft Room AIR Conditioners Limited Warranty Technical Support Contact Information Friedrich AIR Conditioning CO
Related manuals
Manual 32 pages 34.87 Kb Manual 47 pages 33.75 Kb Manual 16 pages 9.01 Kb Manual 32 pages 56.71 Kb

R-410A specifications

Friedrich R-410A is an advanced refrigerant widely used in HVAC (Heating, Ventilation, and Air Conditioning) systems, known for its high efficiency and environmental friendliness. As a hydrofluorocarbon (HFC) blend, R-410A has become the preferred alternative to R-22, which is being phased out due to its ozone-depleting potential. One of the main features of R-410A is its high latent heat of vaporization, which allows for efficient heat transfer and improved cooling performance in air conditioning units.

Technologically, R-410A operates at higher pressures than older refrigerants, meaning systems designed for R-410A need to be built with more robust components to safely handle these pressures. This results in a more compact system design that offers enhanced performance and reliability. The dual-component nature of R-410A—composed of difluoromethane (R-32) and pentafluoroethane (R-125)—provides an optimal balance of thermodynamic properties, leading to superior energy efficiency, especially in variable speed applications.

In terms of characteristics, R-410A has a higher cooling capacity, which enables HVAC systems to effectively cool larger spaces or run more efficiently when cooling smaller areas. The refrigerant is non-toxic and non-flammable, which enhances safety during its use. In addition, R-410A has a lower global warming potential relative to other refrigerants, making it a more environmentally responsible choice for modern cooling systems.

Moreover, R-410A systems typically require less refrigerant charge due to their efficiency, contributing to reduced greenhouse gas emissions. The adoption of R-410A aligns with regulatory trends aimed at minimizing the environmental impact of refrigerants in cooling applications.

Overall, the Friedrich R-410A refrigerant embodies a combination of technology and environmental stewardship, making it a cornerstone of contemporary HVAC design. Its ability to provide effective and energy-efficient cooling solutions while being compliant with modern environmental regulations positions R-410A as the refrigerant of choice for engineers and installers focused on sustainability and performance in air conditioning systems.