Friedrich R-410A service manual Heating Element Heat Pump Models, Drain PAN Valve

Page 36

COMPONENTS TESTING

HEATING ELEMENT

All heat pumps and electric heat models are equipped with a heating element with the exception of model YS10M10. The other “YS” and “ES” models are equipped with a 3.3 KW element. The “YM” and “EM” models are equipped with a 4.0 KW element. The “YL” and “EL” models are equipped with a 5.2 KW element.

Heating Element

Sample

The heating element contains a fuse link and a heater limit switch. The fuse link is in series with the power supply and will open and interrupt the power when the temperature reaches 199°F or a short circuit occurs in the heating element. Once the fuse link separates, a new fuse link must be installed.

NOTE: Always replace with the exact replacement.

The heater element has a high limit control. This control is a bimetal thermostat mounted in the top of the heating element.

Should the fan motor fail or filter become clogged, the high limit control will open and interrupt power to the heater before reaching an unsafe temperature condition.

The control is designed to open at 110°F ±6°F. Test continuity below 110°F and for open above 110°F.

HEATING ELEMENT (Heat Pump Models)

The heating element for the “Y” model is energized by an outdoor thermistor via the electronic control board. The outdoor defrost thermistor is adjusted at

apredetermined temperature to bring on the heating element and turn off the compressor. The room

TESTING THE HEATING ELEMENT

WARNING

ELECTRIC SHOCK HAZARD

Disconnect power to the unit before servicing. Failure to follow this warning could result in serious injury or death.

Testing of the elements can be made with an ohmmeter across the terminals after the connecting wires have been removed. A cold resistance reading of approximately 14.5 ohms for the 3.3 KW heater, 11.9 ohms for the 4.0 KW heater and 9.15 ohms for the 5.2 KW heater should be registered.

DRAIN PAN VALVE

During the cooling mode of operation, condensate which collects in the drain pan is picked up by the con- denser fan blade and sprayed onto the condenser coil. This assists in cooling the refrigerant plus evaporating the water.

During the heating mode of operation, it is necessary that water be removed to prevent it from freezing during cold outside temperatures. This could cause the con- denser fan blade to freeze in the accumulated water and prevent it from turning.

To provide a means of draining this water, a bellows type drain valve is installed over a drain opening in the base pan.

This valve is temperature sensitive and will open when the outside temperature reaches 40°F. The valve will close gradually as the temperature rises above 40°F to fully close at 60°F.

Bellows Assembly

Drain Pan Valve

35

Image 36
Contents Cool Only Cool with Electric HeatHeat Pump with Electric Heat Heat Pump Volt YS10M10Table Of Contents Important Safety Information Your safety and the safety of others are very importantRefrigeration System Repair Hazards Property Damage Hazards Introduction Model and Serial Number LocationUnit Identification Specifications Performance DataInstallation Information / Sleeve Dimensions Electrical Data Electric Shock HazardFire Hazard Make sure the wiring is adequate for your unit Control Panel Operation Special Functions System Exit Back FAN Mode Speed Display Schedule Enter Digital Control Panels Access Codes Summary Key Sequence ActionRemote Control Operation Remote Control Operation Electronic Control System Maintenance IntroductionElectronic Control System Maintenance Operation Test mode Bypasses Following functions Can be TestedTo Clear Error Codes’ History Factory USE onlyUnit Operation Front PanelCOOL-HEAT SET Points System Set Point Mapping FigureElectronic Control Sequence of Operation Compressor OperationHeating Mode Control Operation Heat Control Heat Pump OnlyHeat Pump With Electric Heat Operation ConditionElectric Heat Operation in Cool with Electric Heat Units Compressor Lock Out Time Fan Mapping During Heat Mode Unit Operation with a WALL-STATRemoving the Front Cover Replacing the Indoor Coil Thermistor Swing OutConnecting a Remote Wall Thermostat Remote Wall Thermostat Location Components Testing CapacitorsCapacitor Check with Capacitor Analyzer Capacitor ConnectionsTesting the Heating Element Electric Shock Hazard Heating ElementHeating Element Heat Pump Models Drain PAN ValveRefrigeration Sequence of Operation 410A Sealed System Repair Considerations Refrigeration system under high pressure410A Sealed Refrigeration System Repairs Equipment RequiredEquipment Must be Capable Risk of Electric ShockMethod Of Charging / Repairs Burn HazardFreeze Hazard Undercharged Refrigerant Systems Overcharged Refrigerant SystemsRestricted Refrigerant System Hermetic Components Check Metering DeviceCheck Valve Capillary Tube SystemsReversing Valve DESCRIPTION/OPERATION Testing the Reversing Valve Solenoid Coil Reversing Valve in Heating ModeChecking the Reversing Valve Procedure For Changing Reversing Valve Touch Test in Heating/Cooling CycleExplosion Hazard Compressor Checks Single Phase Resistance Test Ground TestChecking Compressor Efficiency Compressor Replacement Recommended procedure for compressor replacementHigh Temperatures High Pressure Hazard Routine Maintenance Sleeve / Drain Decorative Front CoverClearances Standard Filter Cleaning Installation Instructions Control Panel Battery Change Procedure Battery type Lithium, 3 Volts, #CR2450Service and Assistance Room AIR Conditioner Unit Performance Test Data Sheet Error Codes and Alarm Status IconTroubleshooting Tips Problem Possible Cause Possible SolutionTroubleshooting Tips Cooling only Room AIR Conditioners Troubleshooting Tips Problem Possible Cause Possible SolutionReplace fuse, reset breaker. If repeats, check Possible Cause Possible Solution Problem Possible Cause Possible Solution Heat / Cool only Room AIR Conditioners Troubleshooting Tips Bad outdoor coil thermistor Replace thermistorHeat Pump Room AIR Conditioners Trouble Shooting Tips Troubleshooting Chart Heat PumpProblem Possible Cause Action Electrical Troubleshooting Chart Heat Pump System Cools When Heating is DesiredHeat Pump YESNormal Function of Valve Malfunction of ValveElectronic Control Board Components Identification DischargeRemote Wall Thermostat Wiring Diagrams Cool W/O Electric HeatSchematic Kuhl Electronic Control Cool only ModelsSL28M30A, SL36M30A KUHL+ Electronic Control Cool with Electric Heat Models ES12M33A, ES15M33A EM18M34A, EM24M34AKUHL+ Electronic Control Cool with Electric Heat Model EL36M35AKUHL+ Electronic Control Heat Pump only Model YS10M10AHeat KUHL+ Electronic Control Heat Pump with Electric Heat Model YL24M35ATHERMISTORS’ Resistance Values This Table Applies to All ThermistorsReplacement Remote Control Configuration Instructions Checking the Remote Control’s OPT # Code Replacement Instructions Aham PUB. NO. RAC-1 Cooling Load Estimate Form Heat Gain from Quantity FactorsDAY Following is an example using the heat load form Heat Load FormHeating Load Form Friedrich Room Unit Heat Pumps Windows & Doors Area, sq. ftInfiltration Windows & Doors AVG Room AIR Conditioners Limited Warranty Technical Support Contact Information Friedrich AIR Conditioning CO
Related manuals
Manual 32 pages 34.87 Kb Manual 47 pages 33.75 Kb Manual 16 pages 9.01 Kb Manual 32 pages 56.71 Kb

R-410A specifications

Friedrich R-410A is an advanced refrigerant widely used in HVAC (Heating, Ventilation, and Air Conditioning) systems, known for its high efficiency and environmental friendliness. As a hydrofluorocarbon (HFC) blend, R-410A has become the preferred alternative to R-22, which is being phased out due to its ozone-depleting potential. One of the main features of R-410A is its high latent heat of vaporization, which allows for efficient heat transfer and improved cooling performance in air conditioning units.

Technologically, R-410A operates at higher pressures than older refrigerants, meaning systems designed for R-410A need to be built with more robust components to safely handle these pressures. This results in a more compact system design that offers enhanced performance and reliability. The dual-component nature of R-410A—composed of difluoromethane (R-32) and pentafluoroethane (R-125)—provides an optimal balance of thermodynamic properties, leading to superior energy efficiency, especially in variable speed applications.

In terms of characteristics, R-410A has a higher cooling capacity, which enables HVAC systems to effectively cool larger spaces or run more efficiently when cooling smaller areas. The refrigerant is non-toxic and non-flammable, which enhances safety during its use. In addition, R-410A has a lower global warming potential relative to other refrigerants, making it a more environmentally responsible choice for modern cooling systems.

Moreover, R-410A systems typically require less refrigerant charge due to their efficiency, contributing to reduced greenhouse gas emissions. The adoption of R-410A aligns with regulatory trends aimed at minimizing the environmental impact of refrigerants in cooling applications.

Overall, the Friedrich R-410A refrigerant embodies a combination of technology and environmental stewardship, making it a cornerstone of contemporary HVAC design. Its ability to provide effective and energy-efficient cooling solutions while being compliant with modern environmental regulations positions R-410A as the refrigerant of choice for engineers and installers focused on sustainability and performance in air conditioning systems.