Friedrich R-410A service manual Heat Pump Room AIR Conditioners Trouble Shooting Tips

Page 65

HEAT PUMP ROOM AIR CONDITIONERS: TROUBLE SHOOTING TIPS

Problem

Possible Cause

Action

 

Incorrect wiring

Refer to applicable wiring diagram

 

Defective solenoid coil

Check for continuity of coil

Unit cools when

 

Block condenser coil & switch unit to cooling.

 

Allow pressure to build up in system, then

heat is called for

Reversing valve fails to shift

switch to heating. If valve fails to shift, replace

 

 

 

 

valve.

 

Inoperative system switch

Check for continuity of system switch

Problem

Possible Cause

Action

 

 

 

 

Heating capillary tube partially

Check for partially starved outer coil. Replace

 

restricted

heating capillary tube

 

 

Switch unit several times from heating to

Cooling adequate,

Check valve leaking internally

cooling. Check temperature rise across

but heating

coil. Refer to specification sheet for correct

 

insufficient

 

temperature rise

 

Reversing valve failing to shift

Denergize solenoid coil, raise head pressure,

 

energize solenoid to break loose. If valve fails

 

completely; bypassing hot gas

 

to make complete shift, replace valve.

 

 

TROUBLESHOOTING CHART - HEAT PUMP

REFRIGERANT SYSTEM DIAGNOSIS - COOLING CYCLE

LOW SUCTION PRESSURE HIGH SUCTION PRESSURE

LOW HEAD PRESSURE

HIGH HEAD PRESSURE

Low Load Conditions

Low Air Flow Across

Indoor Coil

Refrigerant System

Restriction

Undercharged

High Load Conditions

High Air Flow Across

Indoor Coil

Reversing Valve not

Fully Seated

Overcharged

Low Load Conditions

Refrigerant System

Restriction

Reversing Valve not

Fully Seated

Undercharged

in System

High Load Conditions

Low Air Flow Across

Outdoor Coil

Overcharged

Noncondensables (air)

Moisture in System

Defective Compressor

Defective Compressor

64

Image 65
Contents Cool with Electric Heat Cool OnlyHeat Pump with Electric Heat Heat Pump Volt YS10M10Table Of Contents Your safety and the safety of others are very important Important Safety InformationRefrigeration System Repair Hazards Property Damage Hazards Model and Serial Number Location IntroductionUnit Identification Performance Data SpecificationsInstallation Information / Sleeve Dimensions Fire Hazard Electrical DataElectric Shock Hazard Make sure the wiring is adequate for your unit Control Panel Operation Special Functions System Exit Back FAN Mode Speed Display Schedule Enter Key Sequence Action Digital Control Panels Access Codes SummaryRemote Control Operation Remote Control Operation Introduction Electronic Control System MaintenanceElectronic Control System Maintenance Operation Following functions Can be Tested Test mode BypassesFactory USE only To Clear Error Codes’ HistoryFront Panel Unit OperationSystem Set Point Mapping Figure COOL-HEAT SET PointsCompressor Operation Electronic Control Sequence of OperationHeat Control Heat Pump Only Heating Mode Control OperationCondition Heat Pump With Electric Heat OperationElectric Heat Operation in Cool with Electric Heat Units Compressor Lock Out Time Fan Mapping Unit Operation with a WALL-STAT During Heat ModeRemoving the Front Cover Swing Out Replacing the Indoor Coil ThermistorConnecting a Remote Wall Thermostat Remote Wall Thermostat Location Capacitors Components TestingCapacitor Check with Capacitor Analyzer Capacitor ConnectionsHeating Element Testing the Heating Element Electric Shock HazardHeating Element Heat Pump Models Drain PAN ValveRefrigeration Sequence of Operation Refrigeration system under high pressure 410A Sealed System Repair ConsiderationsEquipment Required 410A Sealed Refrigeration System RepairsEquipment Must be Capable Risk of Electric ShockFreeze Hazard Method Of Charging / RepairsBurn Hazard Overcharged Refrigerant Systems Undercharged Refrigerant SystemsRestricted Refrigerant System Metering Device Hermetic Components CheckCheck Valve Capillary Tube SystemsReversing Valve DESCRIPTION/OPERATION Checking the Reversing Valve Testing the Reversing Valve Solenoid CoilReversing Valve in Heating Mode Explosion Hazard Procedure For Changing Reversing ValveTouch Test in Heating/Cooling Cycle Compressor Checks Checking Compressor Efficiency Single Phase Resistance TestGround Test High Temperatures Compressor ReplacementRecommended procedure for compressor replacement High Pressure Hazard Routine Maintenance Clearances Sleeve / DrainDecorative Front Cover Standard Filter Cleaning Installation Instructions Battery type Lithium, 3 Volts, #CR2450 Control Panel Battery Change ProcedureService and Assistance Room AIR Conditioner Unit Performance Test Data Sheet Icon Error Codes and Alarm StatusProblem Possible Cause Possible Solution Troubleshooting TipsTroubleshooting Tips Problem Possible Cause Possible Solution Cooling only Room AIR Conditioners Troubleshooting TipsReplace fuse, reset breaker. If repeats, check Possible Cause Possible Solution Problem Possible Cause Possible Solution Bad outdoor coil thermistor Replace thermistor Heat / Cool only Room AIR Conditioners Troubleshooting TipsProblem Possible Cause Action Heat Pump Room AIR Conditioners Trouble Shooting TipsTroubleshooting Chart Heat Pump System Cools When Heating is Desired Electrical Troubleshooting Chart Heat PumpHeat Pump YESMalfunction of Valve Normal Function of ValveDischarge Electronic Control Board Components IdentificationCool W/O Electric Heat Remote Wall Thermostat Wiring DiagramsKuhl Electronic Control Cool only Models SchematicSL28M30A, SL36M30A ES12M33A, ES15M33A EM18M34A, EM24M34A KUHL+ Electronic Control Cool with Electric Heat ModelsEL36M35A KUHL+ Electronic Control Cool with Electric Heat ModelYS10M10A KUHL+ Electronic Control Heat Pump only ModelHeat YL24M35A KUHL+ Electronic Control Heat Pump with Electric Heat ModelThis Table Applies to All Thermistors THERMISTORS’ Resistance ValuesReplacement Remote Control Configuration Instructions Checking the Remote Control’s OPT # Code Replacement Instructions Aham PUB. NO. RAC-1 DAY Cooling Load Estimate FormHeat Gain from Quantity Factors Heat Load Form Following is an example using the heat load formInfiltration Windows & Doors AVG Heating Load Form Friedrich Room Unit Heat PumpsWindows & Doors Area, sq. ft Room AIR Conditioners Limited Warranty Technical Support Contact Information Friedrich AIR Conditioning CO
Related manuals
Manual 32 pages 34.87 Kb Manual 47 pages 33.75 Kb Manual 16 pages 9.01 Kb Manual 32 pages 56.71 Kb

R-410A specifications

Friedrich R-410A is an advanced refrigerant widely used in HVAC (Heating, Ventilation, and Air Conditioning) systems, known for its high efficiency and environmental friendliness. As a hydrofluorocarbon (HFC) blend, R-410A has become the preferred alternative to R-22, which is being phased out due to its ozone-depleting potential. One of the main features of R-410A is its high latent heat of vaporization, which allows for efficient heat transfer and improved cooling performance in air conditioning units.

Technologically, R-410A operates at higher pressures than older refrigerants, meaning systems designed for R-410A need to be built with more robust components to safely handle these pressures. This results in a more compact system design that offers enhanced performance and reliability. The dual-component nature of R-410A—composed of difluoromethane (R-32) and pentafluoroethane (R-125)—provides an optimal balance of thermodynamic properties, leading to superior energy efficiency, especially in variable speed applications.

In terms of characteristics, R-410A has a higher cooling capacity, which enables HVAC systems to effectively cool larger spaces or run more efficiently when cooling smaller areas. The refrigerant is non-toxic and non-flammable, which enhances safety during its use. In addition, R-410A has a lower global warming potential relative to other refrigerants, making it a more environmentally responsible choice for modern cooling systems.

Moreover, R-410A systems typically require less refrigerant charge due to their efficiency, contributing to reduced greenhouse gas emissions. The adoption of R-410A aligns with regulatory trends aimed at minimizing the environmental impact of refrigerants in cooling applications.

Overall, the Friedrich R-410A refrigerant embodies a combination of technology and environmental stewardship, making it a cornerstone of contemporary HVAC design. Its ability to provide effective and energy-efficient cooling solutions while being compliant with modern environmental regulations positions R-410A as the refrigerant of choice for engineers and installers focused on sustainability and performance in air conditioning systems.