Lincoln Electric SVM151-A service manual Electric Shock can kill

Page 3

ii

ii

SAFETY

Return to Master TOC

Return to Master TOC

Return to Master TOC

Return to Master TOC

ELECTRIC SHOCK can kill.

3.a. The electrode and work (or ground) circuits are electrically “hot” when the welder is on. Do not touch these “hot” parts with your bare skin or wet clothing. Wear dry, hole-free gloves to insulate hands.

3.b. Insulate yourself from work and ground using dry insulation. Make certain the insulation is large enough to cover your full area of physical contact with work and ground.

In addition to the normal safety precautions, if welding must be performed under electrically hazardous conditions (in damp locations or while wearing wet clothing; on metal structures such as floors, gratings or scaffolds; when in cramped positions such as sitting, kneeling or lying, if there is a high risk of unavoidable or accidental contact with the workpiece or ground) use the following equipment:

Semiautomatic DC Constant Voltage (Wire) Welder.

DC Manual (Stick) Welder.

AC Welder with Reduced Voltage Control.

3.c. In semiautomatic or automatic wire welding, the electrode, electrode reel, welding head, nozzle or semiautomatic welding gun are also electrically “hot”.

3.d. Always be sure the work cable makes a good electrical connection with the metal being welded. The connection should be as close as possible to the area being welded.

3.e. Ground the work or metal to be welded to a good electrical (earth) ground.

3.f. Maintain the electrode holder, work clamp, welding cable and welding machine in good, safe operating condition. Replace damaged insulation.

3.g. Never dip the electrode in water for cooling.

3.h. Never simultaneously touch electrically “hot” parts of electrode holders connected to two welders because voltage between the two can be the total of the open circuit voltage of both welders.

3.i. When working above floor level, use a safety belt to protect yourself from a fall should you get a shock.

3.j. Also see Items 6.c. and 8.

ARC RAYS can burn.

4.a. Use a shield with the proper filter and cover plates to protect your eyes from sparks and the rays of the arc when welding or observing open arc welding. Headshield and filter lens should conform to ANSI Z87. I standards.

4.b. Use suitable clothing made from durable flame-resistant material to protect your skin and that of your helpers from the arc rays.

4.c. Protect other nearby personnel with suitable, non-flammable screening and/or warn them not to watch the arc nor expose themselves to the arc rays or to hot spatter or metal.

FUMES AND GASES can be dangerous.

5.a. Welding may produce fumes and gases hazardous to health. Avoid breathing these fumes and gases.When welding, keep your head out of the fume. Use enough ventilation and/or exhaust at the arc to keep

fumes and gases away from the breathing zone. When

welding with electrodes which require special ventilation such as stainless or hard facing (see instructions on container or MSDS) or on lead or cadmium plated steel and other metals or coatings which produce highly toxic fumes, keep exposure as low as possible and below Threshold Limit Values (TLV) using local exhaust or mechanical ventilation. In confined spaces or in some circumstances, outdoors, a respirator may be required. Additional precautions are also required when welding on galvanized steel.

5.b. Do not weld in locations near chlorinated hydrocarbon vapors coming from degreasing, cleaning or spraying operations. The heat and rays of the arc can react with solvent vapors to form phosgene, a highly toxic gas, and other irritating products.

5.c. Shielding gases used for arc welding can displace air and cause injury or death. Always use enough ventilation, especially in confined areas, to insure breathing air is safe.

5.d. Read and understand the manufacturer’s instructions for this equipment and the consumables to be used, including the material safety data sheet (MSDS) and follow your employer’s safety practices. MSDS forms are available from your welding distributor or from the manufacturer.

5.e. Also see item 1.b.

Mar ‘95

Image 3
Contents Multi-Weld TM 350 Arc Converter California Proposition 65 Warnings SafetyElectric Shock can kill Iii Welding Sparks can cause fire or explosionSûreté Pour Soudage a L’Arc Précautions DE SûretéMaster Table of Contents for ALL Sections Table of Contents Installation Section Technical Specifications MULTI-WELD 350 K1735-1 InstallationQUICK-CONNECT PIG-TAILS Safety PrecautionsCase Grounding Work ConnectionFixed Parallel Operation Converters Cable Size On Cable AWG mm2 Power Source SetupTable of Contents Operation Section Safety Instructions OperationOperating Instructions Product Description VersatilePortable Distribution BOX MULTI-SYSTEM Power SourcePIG-TAIL Leads and Connectors Recommended Equipment and ProcessesCV Mode Wire Welding CC Mode Stick Welding and GougingRemote Output Control Options Front Panel Controls Input Power/ Mode Switch has three positionsRecessed Panel Controls Cable Handling For CC STICK/GOUGE Mode onlyParalleled Converters Transporting and Storage of the MULTI-WELDProtection Features MULTI-WELD Table of Contents Accessories Section Connection of Lincoln Electric Wire Feeders AccessoriesOPTIONS/ACCESSORIES Semiautomatic Welding AccessoriesTo Work MULTI-WELD Table of Contents Maintenance SectionSection D-1 Maintenance MaintenanceSee additional warning information throughout this manual Figure D.2 Major Component Locations ServiceMULTI-WELD Table of Contents Theory of Operation Section General Description Theory of OperationFigure E.3 Power Modules and Feedback Power Modules and FEED- BackAnalog Control Power Supply Board and Weld Control Board Figure E.5 Mode Selector and Output Controls Mode Selector and Output ControlsOVER-VOLTAGE Protection Insulated Gate Bipolar Transistor Igbt Operation 8E-8 Pulse Width Modulation70-80VDC Chopper Technology FundamentalsMULTI-WELD Table of Contents Troubleshooting & Repair Section HOW to USE Troubleshooting Guide Troubleshooting & RepairPC Board can be damaged by static electricity PC Board Troubleshooting ProceduresBoard Test Troubleshooting GuidePower Supply Board Test Perform the DC Buss SupplyVoltage Test SpecificationsPerform the Input Contactor Coil Resistance and SupplyTest Input Voltage and ResistanceFunction Problems Analog Control Power Supply Board Test Tion and Adjustment TestSee the Digital Meter Calibra Perform the DC Buss Supply Welding Problems Troubleshooting & Repair Troubleshooting & Repair Case Cover Assembly Removal Replacement Procedure Test DescriptionMaterials Needed Replacement Procedure Removal ProcedurePower Module Capacitor Discharge Procedure Figure F.2 Power Module Capacitor Terminal Discharge ProcedureInput Contactor Coil Resistance and Supply Voltage Test Leads #303A #330 Coil Test ProcedurePerform the Power Module Capacitor Discharge procedure Input Contactor Coil Resistance Supply Voltage TestSupply PC Board Test Test for Contact ContinuityAnalog Control Power Supply PC Board Test Figure F.4 Analog Control Power Supply PC Board Test ProcedurePower Supply PC Board Test DC Buss Power Supply PC Board Test P46 P47 DC Buss Power Supply PC BoardTable F.2 DC Buss Power Supply PC Board Voltage Table Chopper PC Board Input Voltages and Resistance Test Chopper PC Board Input Voltages Resistance Test Figure F.6 Power Module Assembly DetailsPower Module Capacitor Discharge Procedure Test Procedure for the Left Side Power ModuleCC Mode Input Voltage Applied 75 VDC Scope SettingsNormal Open Circuit Voltage Waveform CV Mode Output Control AT Maximum Normal Weld Voltage Waveform Machine Loaded to 350 Amps AT 34 Volts CC-STICK ModeMachine Loaded to 350 Amps AT 34 Volts CV Mode CV Mode Output Control AT Minimum Description Case Front Assembly Removal and ReplacementReplace the case cover Weld Control or Peripheral PC Board Removal and Replacement Figure F.8 Case Front Assembly Details Replacement Procedure Description Lens Bezel Spacer Seal Knob Digital Meter Removal ProcedureRefer to Figure F.9 Output Control Potentiometer Removal ProcedureInput Contactor Removal and Replacement Lead #331 Figure F.10 Input Contactor Assembly DetailsReplacement Procedure Input Diode Removal and Replacement Figure F.11 Input Diode Assembly Details Refer to Figure F.11 25-27 300-324FAN Motor Assembly Removal and Replacement Figure F.12 FAN Motor Assembly Details Perform the Input Diode Removal proce- dure Perform the Input Diode Replacement procedurePower Capacitor Removal and Replacement Figure F.13 Power Capacitor Mounting Details Reassembly Chopper PC Board and Diode Module Removal and Replacement Removal Chopper PC Board Removal and ReplacementRefer to Figure F.14 ReplacementFigure F.15 Diode Module Mounting Details Diode Module Removal and ReplacementRefer to Figure F.15 Figure F.16 Diode Module Tightening Sequence Load Test Retest After RepairIdle Amps Open Circuit VoltagesTable of Contents Electrical Diagrams Section Electrical DiagramsWiring Diagram MULTI-WELD MULTI-WELD 350 Wiring DiagramSchematic Control PC Board #1 Schematic Control PC Board #2 Schematic Control PC Board #3 Schematic Control PC Board #4 Schematic Control PC Board #5 RESISTOR,SMD,1W,243OHMS,1% PC Board ASSEMBLY-CONTROLSchematic Peripheral Printed Circuit Board PC Board Reference Description Designators PC Board ASSEMBLY-PERIPHERALSchematic Power Printed Circuit Board Return to Section Return to Section TOC To Section TOC PC Board ASSEMBLY-POWERSchematic Analog Printed Circuit Board PC Board ASSEMBLY-ANALOG Schematic BY-PASS Printed Circuit Board PC Board Assembly BY-PASS 19303 M Schematic Chopper Printed Circuit BoardPC Board Assembly Chopper SVM Error Reporting Form