Lincoln Electric SVM 122-A service manual Safety, California Proposition 65 Warnings

Page 2

Return to Master TOC

TOC

i

i

SAFETY

WARNING

CALIFORNIA PROPOSITION 65 WARNINGS

Diesel engine exhaust and some of its constituents

 

The engine exhaust from this product contains

are known to the State of California to cause can-

 

chemicals known to the State of California to cause

cer, birth defects, and other reproductive harm.

 

cancer, birth defects, or other reproductive harm.

 

 

 

The Above For Diesel Engines

 

The Above For Gasoline Engines

ARC WELDING CAN BE HAZARDOUS. PROTECT YOURSELF AND OTHERS FROM POSSIBLE SERIOUS INJURY OR DEATH. KEEP CHILDREN AWAY. PACEMAKER WEARERS SHOULD CONSULT WITH THEIR DOCTOR BEFORE OPERATING.

Read and understand the following safety highlights. For additional safety information, it is strongly recommended that you purchase a copy of “Safety in Welding & Cutting - ANSI Standard Z49.1” from the American Welding Society, P.O. Box 351040, Miami, Florida 33135 or CSA Standard W117.2-1974. A Free copy of “Arc Welding Safety” booklet E205 is available from the Lincoln Electric Company, 22801 St. Clair Avenue, Cleveland, Ohio 44117-1199.

BE SURE THAT ALL INSTALLATION, OPERATION, MAINTENANCE AND REPAIR PROCEDURES ARE PERFORMED ONLY BY QUALIFIED INDIVIDUALS.

Return to Master

Return to Master TOC

Return to Master TOC

FOR ENGINE powered equipment.

1.a. Turn the engine off before troubleshooting and maintenance work unless the maintenance work requires it to be running.

____________________________________________________

1.b.Operate engines in open, well-ventilated areas or vent the engine exhaust fumes

outdoors.

____________________________________________________

1.c. Do not add the fuel near an open flame weld- ing arc or when the engine is running. Stop the engine and allow it to cool before refuel- ing to prevent spilled fuel from vaporizing on contact with hot engine parts and igniting. Do not spill fuel when filling tank. If fuel is spilled, wipe it up and do not start engine until fumes

have been eliminated.

____________________________________________________

1.d. Keep all equipment safety guards, covers and devices in position and in good repair.Keep hands, hair, clothing and tools away from V-belts, gears, fans and all other moving parts when starting, operating or repairing equipment.

____________________________________________________

1.e. In some cases it may be necessary to remove safety guards to perform required maintenance. Remove guards only when necessary and replace them when the maintenance requiring their removal is complete. Always use the greatest care when working near moving parts.

___________________________________________________

1.f. Do not put your hands near the engine fan. Do not attempt to override the governor or idler by pushing on the throttle con- trol rods while the engine is running.

___________________________________________________

1.g. To prevent accidentally starting gasoline engines while turning the engine or welding generator during maintenance work, disconnect the spark plug wires, distributor cap or magneto wire as appropriate.

1.h. To avoid scalding, do not remove the radiator pressure cap when the engine is hot.

ELECTRIC AND MAGNETIC FIELDS may be dangerous

2.a. Electric current flowing through any conductor causes localized Electric and Magnetic Fields (EMF). Welding current creates EMF fields around welding cables and welding machines

2.b. EMF fields may interfere with some pacemakers, and welders having a pacemaker should consult their physician before welding.

2.c. Exposure to EMF fields in welding may have other health effects which are now not known.

2.d. All welders should use the following procedures in order to minimize exposure to EMF fields from the welding circuit:

2.d.1. Route the electrode and work cables together - Secure them with tape when possible.

2.d.2. Never coil the electrode lead around your body.

2.d.3. Do not place your body between the electrode and work cables. If the electrode cable is on your right side, the work cable should also be on your right side.

2.d.4. Connect the work cable to the workpiece as close as possible to the area being welded.

2.d.5. Do not work next to welding power source.

IDEALARC DC-400

LINCOLN ®

ELECTRIC

Image 2
Contents Safety Depends on You Idealarc TMDC-400Safety California Proposition 65 WarningsElectric Shock can kill Cylinder may explode if damaged Précautions DE Sûreté Master Table of Contents for ALL Sections Table of Contents Installation Section Installation Technical Specifications Idealarc DC-400Lifting Safety PrecautionsSelect Suitable Location TiltingInput Supply Connections Input ConnectionsGround Connection Electric Shock can killInput Wire and Fuse Size Figure A.3 Input Power Supply ConnectionsReconnect Procedure Input Supply Connection DiagramOutput Connections Figure A.6 Output Terminal ConnectionsCycle Wire Feeder ConnectionsCycle 500 Amp 50% Duty Operation Section Operating Instructions Safety InstructionsOPERATIONB-2 Operation General DescriptionControls and Settings Figure B.1 Case Front ControlsOperation Welding Operation Remote ControlWelding Procedure Recommendations Operating StepsNA-3 Automatic Wire Feeder ARC Striking with the NA-3 Start BoardNA-5 Automative Wire Feeder LN-8 Semiautomatic Wire FeederAuxiliary Power Overload ProtectionTable of Contents Accessories Field Installed Options OPTIONS/ACCESSORIESFactory Installed Option Diode OptionMultiprocess Switch Operation ConnectionsRemote Output Control K857 with K864 Adapter Plug or K775 Remote Control Adapter Cable K864K843 Amptrol Adapter Installation Instructions Amptrol Adapter Cable K843K843 Amptrol Adapter Installation Instructions Amptrol and Hi-Freq. Kit The Amptrol will startCapacitor Discharge Circuit K828-1 Automatic Wire FeedersConnecting the NA-3 to the Idealarc DC-400 Terminal Strip HI-FREQ KIT K799 for Codes 8634 and Above onlyConnecting the NA-5 to the Idealarc DC-400 Terminal Strip Cable Plug K597-XX Input Cable Assembly Idealarc DC-400 To NA-3 or NA-5 InputSemiautomatic Wire Feeders Connecting the LN-7 to the Idealarc DC-400 14-PIN AmphenolConnecting the LN-7 to the Idealarc DC-400 Terminal Strip Accessories Accessories Figure C.11 Idealarc DC-400/LN-742 Connection Diagram Table of Contents Maintenance Routine and Periodic Maintenance Figure D.1 General Component Locations Table of Contents Theory of Operation Section Contactor and Main Theory of OperationInput Line Voltage TransformerOutput Mode and CONTROL, Rectification and Feedback Protective Devices and Circuits SCR Operation Figure E.4 SCR OperationTable of Contents Troubleshooting & Repair Section Troubleshooting & Repair HOW to USE Troubleshooting GuidePC Board Troubleshooting Procedures PC Board can be damaged by static electricityTroubleshooting Guide Output ProblemsPerform the Main Transformer Rectifier Bridge Test Tifier Bridge Test Output Problems Test Perform the SCR/Diode Rec Tifier Bridge Test Function Problems Form the SCR/Diode Rectifier Welding Problems Toxic. Avoid contact with any Portion of your body. CleanTrolyte in these capacitors is Make sure welding process is Materials Needed Input Contactor TestDescription Test Procedure Input Contactor TestTest for Contact Continuity Figure F.2 Input Contactor Test ConnectionsControl Transformer T2 Voltage Test Control Transformer T2 Voltage Test Figure F.3 Control Transformer and Lead LocationsTroubleshooting & Repair Main Transformer T1 Voltage Test Main Transformer T1 Voltage Test Figure F.6 Main Secondary Lead Test Points Troubleshooting & Repair Plug P1 Phase Angle Winding Voltages Figure F.8 Control Board Plug P1 LocationStatic SCR/DIODE Rectifier Bridge Test Static SCR/DIODE Rectifier Bridge Test Figure F.9 Control Board and Snubber Board Plug LocationsSCR Test Active SCR Test Active SCR Test P1 and P3 Locations Plug P5 LocationFigure F.15 Heat Sink Test Points Figure F.16 SCR Tester Circuit and SCR Connections Scope Settings CH1Maximum Output Setting no Load Troubleshooting & Repair Troubleshooting & Repair Troubleshooting & Repair 2V/Div Troubleshooting & Repair Input Contactor CR1 CLEANING/REPLACEMENT Contactor Replacement Procedure Input Contactor CR1 CLEANING/REPLACEMENTCleaning Procedure FAN Motor and Blade Removal and Replacement FAN Motor and Blade Removal and Replacement ProcedureSCR/DIODE Rectifier Assembly Removal and Replacement SCR/DIODE Rectificer Assembly Removal and ReplacementSCR Removal and Replacement SCR Removal and Replacement Special InstructionsProcedure for the 1/2 Inch Wide Spring Figure F.21 1/2 Wide Leaf SpringClamping Procedure For 1/4-28 CAP Screws Clamping Procedure For 1/4-20 CAP ScrewsProcedure for Inch Wide SpringAfter Replacing the SCRs Mounting of Stud Type Diodes to Aluminum Heat Sinks Diode Stud Foot Inch Size Pounds Mounting of Stud Type Diodes to AluminumHeat Sinks Main Transformer Removal and Replacement Main Transformer Removal & Replacement Removal of Lift BailRemoval of Choke and TOP Iron Assembly Figure F.26 Choke RemovalReassembly of Transformer Coils Figure F.27 Epoxy MIX Application AreasFigure F.28 Coil Lead Placement Figure F.30 Primary Thermostat Location Reassembling the Main Transformer Into the Machine Reassemble the Lift BailRetest After Repair Input volts/Phase/Hertz Maximum Idle Amps Maximum Idle KWMode Input Hertz Open Circuit Volts Input Idle Amps and WattsRetest After Repair Maximum Acceptable Output Voltage AT Minimum Ouput SettingsMode Control Settings Load Table of Contents Electrical Diagrams Section Idealarc DC400 Wiring Diagram Codes 9847 LOW VoltageWiring Diagram Code Only. It may not be accurate for allControl PC Board G2588 Layout Control DC400Starting PC Board M14520 Layout TP2Snubber PC Board M15370 Layout Control PC Board G2588 Schematic 2586Starting PC Board M14520 Schematic General InformationSnubber PC Board M15370 Schematic General Information