Lincoln Electric SVM 122-A service manual Figure E.4 SCR Operation

Page 44

Return to Section TOC

Return to Section TOC

Return to Master TOC

Return to Master TOC

E-5

E-5

THEORY OF OPERATION

FIGURE E.4 – SCR Operation

SCR OPERATION

Return to Section TOC

Return to Master TOC

A silicon controlled rectifier (SCR) is a three terminal device used to control rather large currents to a load. An SCR acts very much like a switch. When a gate signal is applied to the SCR, it is turned ON and there is current flow from anode to cathode. In the ON state, the SCR acts like a closed switch. When the SCR is turned OFF, there is no current flow from anode to cathode; thus the device acts like an open switch. As the name suggests, the SCR is a rectifier; so it passes current only during positive half cycles of the AC supply. The positive half cycle is the portion of the sine wave in which the anode of the SCR is more pos- itive than the cathode.

When an AC supply voltage is applied to the SCR, the device spends a certain portion of the AC cycle time in the ON state and the remainder of the time in the OFF state. The amount of time spent in the ON state is controlled by the gate.

An SCR is fired by a short burst of current into the gate. This gate pulse must be more positive than the cathode voltage. Since there is a standard PN junc- tion between gate and cathode, the voltage between these terminals must be slightly greater than 0.6V. Once the SCR has fired, it is not necessary to contin- ue the flow of gate current. As long as current contin- ues to flow from anode to cathode, the SCR will remain on. When the anode to cathode current drops below a minimum value, called holding current, the SCR will shut off. This normally occurs as the AC sup- ply voltage passes through zero into the negative por- tion of the sine wave. If the SCR is turned on early in the positive half cycle, the conduction time is longer, resulting in greater SCR output. If the gate firing occurs later in the cycle, the conduction time is less, resulting in lower SCR output.

Return to Section TOC

Return to Master TOC

IDEALARC DC-400

LINCOLN ®

ELECTRIC

Image 44
Contents Safety Depends on You Idealarc TMDC-400Safety California Proposition 65 WarningsElectric Shock can kill Cylinder may explode if damaged Précautions DE Sûreté Master Table of Contents for ALL Sections Table of Contents Installation Section Installation Technical Specifications Idealarc DC-400Safety Precautions Select Suitable LocationLifting TiltingInput Connections Ground ConnectionInput Supply Connections Electric Shock can killInput Wire and Fuse Size Figure A.3 Input Power Supply ConnectionsReconnect Procedure Input Supply Connection DiagramOutput Connections Figure A.6 Output Terminal ConnectionsCycle Wire Feeder ConnectionsCycle 500 Amp 50% Duty Operation Section Operating Instructions Safety InstructionsOPERATIONB-2 Operation General DescriptionControls and Settings Figure B.1 Case Front ControlsOperation Remote Control Welding Procedure RecommendationsWelding Operation Operating StepsNA-3 Automatic Wire Feeder ARC Striking with the NA-3 Start BoardNA-5 Automative Wire Feeder LN-8 Semiautomatic Wire FeederAuxiliary Power Overload ProtectionTable of Contents Accessories OPTIONS/ACCESSORIES Factory Installed OptionField Installed Options Diode OptionMultiprocess Switch Operation ConnectionsRemote Control Adapter Cable K864 K843 Amptrol Adapter Installation InstructionsRemote Output Control K857 with K864 Adapter Plug or K775 Amptrol Adapter Cable K843K843 Amptrol Adapter Installation Instructions Amptrol and Hi-Freq. Kit The Amptrol will startAutomatic Wire Feeders Connecting the NA-3 to the Idealarc DC-400 Terminal StripCapacitor Discharge Circuit K828-1 HI-FREQ KIT K799 for Codes 8634 and Above onlyConnecting the NA-5 to the Idealarc DC-400 Terminal Strip Cable Plug K597-XX Input Cable Assembly Idealarc DC-400 To NA-3 or NA-5 InputSemiautomatic Wire Feeders Connecting the LN-7 to the Idealarc DC-400 14-PIN AmphenolConnecting the LN-7 to the Idealarc DC-400 Terminal Strip Accessories Accessories Figure C.11 Idealarc DC-400/LN-742 Connection Diagram Table of Contents Maintenance Routine and Periodic Maintenance Figure D.1 General Component Locations Table of Contents Theory of Operation Section Theory of Operation Input Line VoltageContactor and Main TransformerOutput Mode and CONTROL, Rectification and Feedback Protective Devices and Circuits SCR Operation Figure E.4 SCR OperationTable of Contents Troubleshooting & Repair Section Troubleshooting & Repair HOW to USE Troubleshooting GuidePC Board Troubleshooting Procedures PC Board can be damaged by static electricityTroubleshooting Guide Output ProblemsPerform the Main Transformer Rectifier Bridge Test Tifier Bridge Test Output Problems Test Perform the SCR/Diode Rec Tifier Bridge Test Function Problems Form the SCR/Diode Rectifier Welding Problems Toxic. Avoid contact with any Portion of your body. CleanTrolyte in these capacitors is Make sure welding process is Materials Needed Input Contactor TestDescription Test Procedure Input Contactor TestTest for Contact Continuity Figure F.2 Input Contactor Test ConnectionsControl Transformer T2 Voltage Test Control Transformer T2 Voltage Test Figure F.3 Control Transformer and Lead LocationsTroubleshooting & Repair Main Transformer T1 Voltage Test Main Transformer T1 Voltage Test Figure F.6 Main Secondary Lead Test Points Troubleshooting & Repair Plug P1 Phase Angle Winding Voltages Figure F.8 Control Board Plug P1 LocationStatic SCR/DIODE Rectifier Bridge Test Static SCR/DIODE Rectifier Bridge Test Figure F.9 Control Board and Snubber Board Plug LocationsSCR Test Active SCR Test Active SCR Test P1 and P3 Locations Plug P5 LocationFigure F.15 Heat Sink Test Points Figure F.16 SCR Tester Circuit and SCR Connections Scope Settings CH1Maximum Output Setting no Load Troubleshooting & Repair Troubleshooting & Repair Troubleshooting & Repair 2V/Div Troubleshooting & Repair Input Contactor CR1 CLEANING/REPLACEMENT Contactor Replacement Procedure Input Contactor CR1 CLEANING/REPLACEMENTCleaning Procedure FAN Motor and Blade Removal and Replacement FAN Motor and Blade Removal and Replacement ProcedureSCR/DIODE Rectifier Assembly Removal and Replacement SCR/DIODE Rectificer Assembly Removal and ReplacementSCR Removal and Replacement SCR Removal and Replacement Special InstructionsProcedure for the 1/2 Inch Wide Spring Figure F.21 1/2 Wide Leaf SpringClamping Procedure For 1/4-28 CAP Screws Clamping Procedure For 1/4-20 CAP ScrewsProcedure for Inch Wide SpringAfter Replacing the SCRs Mounting of Stud Type Diodes to Aluminum Heat Sinks Diode Stud Foot Inch Size Pounds Mounting of Stud Type Diodes to AluminumHeat Sinks Main Transformer Removal and Replacement Main Transformer Removal & Replacement Removal of Lift BailRemoval of Choke and TOP Iron Assembly Figure F.26 Choke RemovalReassembly of Transformer Coils Figure F.27 Epoxy MIX Application AreasFigure F.28 Coil Lead Placement Figure F.30 Primary Thermostat Location Reassembling the Main Transformer Into the Machine Reassemble the Lift BailInput volts/Phase/Hertz Maximum Idle Amps Maximum Idle KW Mode Input Hertz Open Circuit VoltsRetest After Repair Input Idle Amps and WattsRetest After Repair Maximum Acceptable Output Voltage AT Minimum Ouput SettingsMode Control Settings Load Table of Contents Electrical Diagrams Section Idealarc DC400 Wiring Diagram Codes 9847 LOW VoltageWiring Diagram Code Only. It may not be accurate for allControl PC Board G2588 Layout Control DC400Starting PC Board M14520 Layout TP2Snubber PC Board M15370 Layout Control PC Board G2588 Schematic 2586Starting PC Board M14520 Schematic General InformationSnubber PC Board M15370 Schematic General Information