Lincoln Electric SVM 122-A service manual Reconnect Procedure, Input Supply Connection Diagram

Page 12

A-6

A-6

INSTALLATION

Return to Section TOC

RECONNECT PROCEDURE

Multiple input voltage welders are shipped connected for the highest voltage listed on the machine’s rating plate. Before installing the welder, be sure the recon- nect panel is connected for the proper voltage.

CAUTION

Failure to follow these instructions can cause immedi- ate failure of components in the welder.

To reconnect a multiple voltage machine to a different voltage, remove input power. Follow the input con- nection diagram, located on the inside access panel cover, appropriate for your machine’s input voltage. These same connection diagrams are shown below.

For 208, 208/230 & 230/460 volts AC - see Figure A.4.

For 230/460/575 volts AC - see Figure A.5.

Return to Section TOC

Return to Section TOC

Return to Section TOC

Return to Master TOC

Return to Master TOC

Return to Master TOC

Return to Master TOC

FIGURE A.4 - INPUT CONNECTION DIAGRAM FOR 208, 208/230 and 230/460 VOLTS AC, 50/60 HZ

 

 

 

 

 

DUAL VOLTAGE MACHINE

 

 

Do not operate with covers

Do not touch electrically live parts

INPUT SUPPLY CONNECTION DIAGRAM

 

 

removed

 

 

IMPORTANT: CHANGE LINK POSITIONS AND PILOT TRANSFORMER CONNECTIONS.

 

 

Disconnect input power before Only qualified persons should install,

 

 

NOTE: MACHINES ARE SHIPPED FROM FACTORY CONNECTED FOR OVER 300 VOLTS

 

 

servicing

 

use or service this equipment

 

 

 

CONNECTION FOR HIGHEST RATING PLATE VOLTAGE, 50 OR 60 HZ.

LINK

 

 

 

 

1. TURN OFF THE INPUT POWER USING THE DISCONNECT SWITCH AT THE FUSE BOX.

 

 

L3

W CR1

 

2. DISCONNECT AND INSULATE THE H2 LEAD TERMINAL WITH TAPE TO PROVIDE AT

LINES

 

 

 

LEAST 600 VOLT INSULATION.

L2

V

 

3. CONNECT L1, L2 & L3 INPUT SUPPLY LINES AND H3 TRANSFORMER LEADS

INPUT

 

CONTACTOR

 

 

{L1

U

 

TO THE INPUT SIDE OF THE CR1 CONTACTOR AS SHOWN.

 

 

4. CONNECT TERMINAL MARKED TO GROUND PER LOCAL AND NATIONAL ELECTRIC

 

 

GND

H1

H2

CODES.

 

 

 

H3

5. MOUNT THE LINKS IN THE POSITIONS SHOWN WITH THE PROVIDED HEX NUTS.

 

 

 

PILOT

 

DOUBLE UP THE LINKS IN TWO OF THE POSITIONS TO SAVE THEM FOR FUTURE

 

 

 

TRANSF.

 

USE. SECURE THE REMAINING HEX NUTS IN PLACE.

 

 

 

CONNECTION FOR LOWEST RATING PLATE VOLTAGE, 50 OR 60 HZ.

LINK

 

 

 

 

1. TURN OFF THE INPUT POWER USING THE DISCONNECT SWITCH AT THE FUSE BOX.

LINES

L3

W CR1

 

2. DISCONNECT AND INSULATE THE H3 LEAD TERMINAL WITH TAPE TO PROVIDE AT

L2

V

 

LEAST 600 VOLT INSULATION.

INPUT

 

3. CONNECT L1, L2 & L3 INPUT SUPPLY LINES AND H2 TRANSFORMER LEADS

CONTACTOR

 

 

{L1

U

 

TO THE INPUT SIDE OF THE CR1 CONTACTOR AS SHOWN.

 

 

GND

H1

 

4. CONNECT TERMINAL MARKED TO GROUND PER LOCAL AND NATIONAL ELECTRIC

 

 

H2

H3

CODES.

 

 

 

 

 

 

 

PILOT

 

5. MOUNT THE LINKS IN THE POSITIONS SHOWN WITH THE PROVIDED HEX NUTS.

 

 

 

TRANSF.

 

 

THE LINCOLN ELECTRIC CO., CLEVELAND OHIO U.S.A. 3-17-95E

M15009

IDEALARC DC-400

LINCOLN ®

ELECTRIC

Image 12
Contents Safety Depends on You Idealarc TMDC-400Safety California Proposition 65 WarningsElectric Shock can kill Cylinder may explode if damaged Précautions DE Sûreté Master Table of Contents for ALL Sections Table of Contents Installation Section Installation Technical Specifications Idealarc DC-400Safety Precautions Select Suitable LocationLifting TiltingInput Connections Ground ConnectionInput Supply Connections Electric Shock can killInput Wire and Fuse Size Figure A.3 Input Power Supply ConnectionsReconnect Procedure Input Supply Connection DiagramOutput Connections Figure A.6 Output Terminal ConnectionsWire Feeder Connections Cycle 500 Amp 50% DutyCycle Operation Section Safety Instructions OPERATIONB-2Operating Instructions Operation General DescriptionControls and Settings Figure B.1 Case Front ControlsOperation Remote Control Welding Procedure RecommendationsWelding Operation Operating StepsNA-3 Automatic Wire Feeder ARC Striking with the NA-3 Start BoardNA-5 Automative Wire Feeder LN-8 Semiautomatic Wire FeederAuxiliary Power Overload ProtectionTable of Contents Accessories OPTIONS/ACCESSORIES Factory Installed OptionField Installed Options Diode OptionMultiprocess Switch Operation ConnectionsRemote Control Adapter Cable K864 K843 Amptrol Adapter Installation InstructionsRemote Output Control K857 with K864 Adapter Plug or K775 Amptrol Adapter Cable K843K843 Amptrol Adapter Installation Instructions Amptrol and Hi-Freq. Kit The Amptrol will startAutomatic Wire Feeders Connecting the NA-3 to the Idealarc DC-400 Terminal StripCapacitor Discharge Circuit K828-1 HI-FREQ KIT K799 for Codes 8634 and Above onlyConnecting the NA-5 to the Idealarc DC-400 Terminal Strip Cable Plug K597-XX Input Cable Assembly Idealarc DC-400 To NA-3 or NA-5 InputSemiautomatic Wire Feeders Connecting the LN-7 to the Idealarc DC-400 14-PIN AmphenolConnecting the LN-7 to the Idealarc DC-400 Terminal Strip Accessories Accessories Figure C.11 Idealarc DC-400/LN-742 Connection Diagram Table of Contents Maintenance Routine and Periodic Maintenance Figure D.1 General Component Locations Table of Contents Theory of Operation Section Theory of Operation Input Line VoltageContactor and Main TransformerOutput Mode and CONTROL, Rectification and Feedback Protective Devices and Circuits SCR Operation Figure E.4 SCR OperationTable of Contents Troubleshooting & Repair Section Troubleshooting & Repair HOW to USE Troubleshooting GuidePC Board Troubleshooting Procedures PC Board can be damaged by static electricityTroubleshooting Guide Output ProblemsPerform the Main Transformer Rectifier Bridge Test Tifier Bridge Test Output Problems Test Perform the SCR/Diode Rec Tifier Bridge Test Function Problems Form the SCR/Diode Rectifier Welding Problems Portion of your body. Clean Trolyte in these capacitors isToxic. Avoid contact with any Make sure welding process is Input Contactor Test DescriptionMaterials Needed Test Procedure Input Contactor TestTest for Contact Continuity Figure F.2 Input Contactor Test ConnectionsControl Transformer T2 Voltage Test Control Transformer T2 Voltage Test Figure F.3 Control Transformer and Lead LocationsTroubleshooting & Repair Main Transformer T1 Voltage Test Main Transformer T1 Voltage Test Figure F.6 Main Secondary Lead Test Points Troubleshooting & Repair Plug P1 Phase Angle Winding Voltages Figure F.8 Control Board Plug P1 LocationStatic SCR/DIODE Rectifier Bridge Test Static SCR/DIODE Rectifier Bridge Test Figure F.9 Control Board and Snubber Board Plug LocationsSCR Test Active SCR Test Active SCR Test P1 and P3 Locations Plug P5 LocationFigure F.15 Heat Sink Test Points Figure F.16 SCR Tester Circuit and SCR Connections Scope Settings CH1Maximum Output Setting no Load Troubleshooting & Repair Troubleshooting & Repair Troubleshooting & Repair 2V/Div Troubleshooting & Repair Input Contactor CR1 CLEANING/REPLACEMENT Input Contactor CR1 CLEANING/REPLACEMENT Cleaning ProcedureContactor Replacement Procedure FAN Motor and Blade Removal and Replacement FAN Motor and Blade Removal and Replacement ProcedureSCR/DIODE Rectifier Assembly Removal and Replacement SCR/DIODE Rectificer Assembly Removal and ReplacementSCR Removal and Replacement SCR Removal and Replacement Special InstructionsProcedure for the 1/2 Inch Wide Spring Figure F.21 1/2 Wide Leaf SpringClamping Procedure For 1/4-28 CAP Screws Clamping Procedure For 1/4-20 CAP ScrewsProcedure for Inch Wide SpringAfter Replacing the SCRs Mounting of Stud Type Diodes to Aluminum Heat Sinks Mounting of Stud Type Diodes to Aluminum Heat SinksDiode Stud Foot Inch Size Pounds Main Transformer Removal and Replacement Main Transformer Removal & Replacement Removal of Lift BailRemoval of Choke and TOP Iron Assembly Figure F.26 Choke RemovalReassembly of Transformer Coils Figure F.27 Epoxy MIX Application AreasFigure F.28 Coil Lead Placement Figure F.30 Primary Thermostat Location Reassembling the Main Transformer Into the Machine Reassemble the Lift BailInput volts/Phase/Hertz Maximum Idle Amps Maximum Idle KW Mode Input Hertz Open Circuit VoltsRetest After Repair Input Idle Amps and WattsMaximum Acceptable Output Voltage AT Minimum Ouput Settings Mode Control Settings LoadRetest After Repair Table of Contents Electrical Diagrams Section Idealarc DC400 Wiring Diagram Codes 9847 LOW VoltageWiring Diagram Code Only. It may not be accurate for allControl PC Board G2588 Layout Control DC400Starting PC Board M14520 Layout TP2Snubber PC Board M15370 Layout Control PC Board G2588 Schematic 2586Starting PC Board M14520 Schematic General InformationSnubber PC Board M15370 Schematic General Information