Lincoln Electric IM536-D Common Metals, Joint Types and Positions, For Fcaw Innershield Process

Page 24

 

B-10

 

LEARNING TO WELD

 

 

 

 

 

 

 

 

2.Can I afford the extra expense, space, and lack of portability required for gas cylinders and gas sup- ply?

3.Do I require clean, finished-looking welds?

If you have answered yes to all the above questions GMAW may be the process for you. If you have answered no to any of the above questions, then you should consider using the FCAW process.

For FCAW (Innershield) Process

1.Do I want simplicity and portability?

2.Will welding be performed outdoors or under windy conditions?

3.Do I require good all position welding capability?

4.Will most welding be performed on 16 gauge and heavier, somewhat rusty or dirty materials?

5.Weld must be cleaned prior to painting.

COMMON METALS

Most metals found around the farm, small shop or home are low carbon steel, sometimes referred to as mild steel. Typical items made with this type of steel include most sheet metal, plate, pipe and rolled shapes such as channels and angle irons. This type of steel can usually be easily welded without special pre- cautions. Some steels, however, contain higher car- bon levels or other alloys and are more difficult to weld. Basically, if a magnet sticks to the metal and you can easily cut the metal with a file, chances are good that the metal is mild steel and that you will be able to weld the material. In addition, aluminum and stainless steel can be welded using the K664-1 Aluminum Welding Kit. For further information on identifying various types of steels and other metals, and for proper procedures for welding them, we again suggest you purchase a copy of “New Lessons in Arc Welding”.

Regardless of the type of metal being welded, in order to get a quality weld, it is important that the metal is free of oil, paint, rust or other contaminants.

JOINT TYPES AND POSITIONS

Five types of welding joints are: Butt Welds, Fillet Welds, Lap Welds, Edge Welds and Corner Welds. See Figure B.11.

Of these, the Butt Weld and Fillet Weld are the two most common welds.

Butt weld

Lap weld

Edge weld

Fillet weld

Corner weld

 

 

 

FIGURE B.11

Butt Welds

Place two plates side by side, leaving a space approx- imately one half the thickness of the metal between them in order to get deeper penetration.

Securely clamp or tack weld the plates at both ends, otherwise the heat will cause the plates to move apart. See Figure B.12.

Now weld the two plates together. Weld from left to right (if right handed). Point the wire electrode down in the crack between the two plates, keeping the gun slightly tilted in the direction of travel. Watch the molten metal to be sure it distributes itself evenly on both edges and in between the plates. This is refered to as the “pull technique”. On thin gauge sheet metal, use the “push technique”. See “Welding Techniques for GMAW (MIG) Process”.

SP-125 PLUS

Image 24 Contents
SP-125 Plus Safety California Proposition 65 WarningsElectric Shock can kill Welding Sparks can cause fire or explosion IiiPrécautions DE Sûreté Sûreté Pour Soudage a L’ArcThank You Please Examine Carton and Equipment For Damage ImmediatelyTable of Contents Vii Installation Safety Precautions Identify and Locate ComponentsElectric Shock can kill Work Clamp Installation Work Cable InstallationSelect Suitable Location StackingGUN Installation Connecting Gun Cable to the SP-125 PlusGAS Connection Gas Solenoid Inlet Fitting Power Input Cable Input ConnectionsCode Requirements for Input Connections Requirements For Rated OutputRequirements For Maximum Output Requirements For CSA Rated OutputObserve all safety information throughout this manual OperationFumes and Gases can be dangerous Welding Sparks can cause fire or explosionControls and Settings Design Features AdvantagesGeneral Description Welding CapabilityWire Loading Welding OperationsSequence of Operation Friction Brake Adjustments Wire ThreadingShielding Gas Making a WeldChanging Machine Over to Feed Other Wire Sizes Cleaning Tip And NozzleProcess Guidelines Wire Feed Overload Protection Overload Protection Output Overload Thermal ProtectionLearning to Weld Learning to WeldARC-WELDING Circuit SELF-SHIELDED Fcaw Welding ARCGmaw MIG Welding ARC Process SelectionFor Gmaw MIG Process Common Metals Joint Types and PositionsFor Fcaw Innershield Process Butt WeldsWelding In The Vertical Position PenetrationFillet Welds Machine SET UP for the SELF-SHIELDED Fcaw Process Welding Techniques for the SELF- Shielded Fcaw ProcessVertical-down Welding Correct Welding PositionCorrect Electrical Stickout ESO Correct Welding SpeedHelpful Hints PracticeMachine SET UP for the Gmaw MIG Process Welding Techniques for the Gmaw MIG ProcessFigure B.24 Troubleshooting Welds To Eliminate a Ropy Convex Bead in order of importanceTo Correct Poor Penetration in order of impor- tance To Eliminate Stubbing* in order of importanceProper Gun Handling Application Chart Accessories Optional AccessoriesK1799-1 Argon-Mixed Gas Adjustable Regulator and Hose Kit K586-1 Deluxe Adjustable Gas Regulator Hose KitReplacement Parts Innershield Fcaw ConversionMaintenance Maintenance Safety PrecautionsItems Requiring no Maintenance Routine and Periodic MAINTE- NanceGUN and Cable Maintenance Configuration of Components in Wire Feeding SystemFor Magnum 100L GUN Contact Tip Cable Liner Drive RollChanging the Contact TIP Changing Drive RollChanging Liner Liner trim length for gun with red trigger Magnum 100LGUN Handle Parts Figure D.3 SP-125 PlusTroubleshooting HOW to USE Troubleshooting GuideTroubleshooting Guide Problems Possible Areas Symptoms MisadjustmentsRecommended Course of Action Feeding Problems Welding Problems Wiring Diagrams SP-125 PlusSP-125 Plus SP-125 Plus How To Read Shop Drawings New Lessons in Arc WeldingNeed Welding Training? $700.00Precaucion Warnung