Philips Semiconductors
Magnetoresistive sensors for
magnetic field measurement
General
|
|
|
|
| VS |
|
| OP1 | R10 |
|
|
|
|
|
|
| |
|
|
| RT | R12 |
|
|
|
| R14 |
| |
|
|
|
|
| |
| R1 |
| R5 |
|
|
| RA |
| OP3 | VO | |
|
|
| |||
|
| R4 | R6 |
|
|
|
|
|
|
| |
| offset |
|
| R13 |
|
|
|
|
|
| |
| R3 | R B | R7 |
|
|
|
| OP2 | R9 |
|
|
|
|
| R11 |
| |
|
|
|
|
| |
KMZ10B | R2 |
|
|
|
|
|
|
|
|
| MLC145 |
Fig.16 KMZ10B application circuit with instrumentation amplifier.
The amplification of the input stage (‘OP1’ and ‘OP2’) is |
|
|
| RT | × TCKTY |
|
|
|
| (11) | ||
given by: |
| TCA = |
|
|
|
| ||||||
|
|
|
| RA + RB + RT |
|
|
|
|
| |||
RT + RB | (9) | For the given negative ‘TC’ of the magnetoresistive sensor | ||||||||||
A1 = 1 + | ||||||||||||
RA |
| and the required amplification of the input stage ‘A1’, the | ||||||||||
where RT is the temperature dependent resistance of the | resistance ‘RA’ and ‘RB’ can be calculated by: |
| ||||||||||
|
|
|
|
| ⎛ TCKTY |
|
| 1 ⎞ |
|
| ||
KTY82 sensor and RB is the bridge resistance of the |
| R |
| = R |
| × | ⎛ | 1 | ⎞ | (12) | ||
|
|
|
| |||||||||
magnetoresistive sensor. |
|
| B |
| T |
| ⎝ TCA | ⎝ |
| A1⎠ | ⎠ |
|
The amplification of the complete amplifier can be |
| RA | RT | + RB |
|
|
|
| (13) | |||
calculated by: |
| = |
|
|
|
| ||||||
R14 |
|
|
| A1 |
|
|
|
|
| |||
(10) |
|
|
|
|
|
|
|
|
|
|
| |
A = A1 × | where TCKTY is the temperature coefficient of the KTY | |||||||||||
R10 |
| |||||||||||
| sensor and TCA is the temperature coefficient of the |
| ||||||||||
|
|
| ||||||||||
The positive temperature coefficient (TC) of the |
| amplifier. This circuit also provides for adjustment of gain | ||||||||||
amplification is: |
| and offset voltage of the |
|
2000 Sep 06 | 14 |