Emerson 3000 installation manual Outdoor Air-Cooled Condensing Units, Unit Dimensions See Table

Page 68

Split System Models

7.4Outdoor Air-Cooled Condensing Units

Figure 32 Outdoor air-cooled condensing unit—horizontal air discharge models

UNIT DIMENSIONS (See Table 26)

C

Fan Rotation

CCW (left side)

Left Air

Intake

Shaded area indicates a minimum clearance of 18" (457mm) for proper air flow

 

Removable (Right) Panel

 

for access to refrigeration

A

components

 

Right Air

 

Discharge

 

B

 

 

C

 

 

 

 

 

Shaded area indicates

 

 

 

a minimum clearance

 

 

 

of 18" (457mm) for

 

C

proper air flow

 

 

 

Shaded area indicates

Removable (Front) Panel

a minimum clearance

of 24" (610mm) for component

for access to high-voltage and

access and removal

low-voltage connections and

SL-11081

refrigeration components

Pg. 4

 

 

 

Liquid Line

Quick Connect A (Male Coupling)

Suction Line Quick Connect (Male Coupling) Except as noted

G F

D

E

B

Electrical Entrance for High-Voltage Connection

C

Electrical Entrance for Low-Voltage Connection

SL-11081

Pg. 6

Liebert® Challenger 3000

62

Image 68
Contents Liebert Challenger 3000 with Liebert iCOM Page Table of Contents Chilled Water Models Split System ModelsFigures R407C RefrigerantTables Important Safety Instructions Liebert Challenger Important Safety Instructions System Descriptions Split Systems Prop Fan Air-CooledCentrifugal Fan Air-Cooled Water-CooledRoom Preparation Equipment InspectionLocation Considerations Equipment HandlingUnit net weight Handling With SkidRemoval of Skid Model Lb. kgUpflow BU cabinet dimensions Floor Cutout Dimensions Piping connection size Piping ConsiderationsDrain Line Piping connections for air-cooled units Downflow models Chilled Water Unit Connection Sizes-inPiping connections for air-cooled units Upflow models Installation Applicable to all Models Condensate Pump Line 1/2 OD CU used only Installation Applicable to all Models Installation Applicable to all Models Installation Applicable to all Models Installation Applicable to all Models Humidifier Supply Water-Optional Infrared Facility Fluid and Piping MaintenanceElectrical Connections Terminal Block For Customer Connectons Upflow Models with Liebert iCOM Downflow Models with Liebert iCOMPlenum Installation Balancing the Air DistributionUnder-Floor Discharge Systems Ducted ApplicationsChecklist for Completed Installation Low Voltage Condenser LocationLine Voltage Common to all models. See below for key to a dimension Air-cooled condenser statisticsLiebert Lee-Tempheater 43-9/16 51-7/16Refrigerant Piping Condenser refrigerant per serial tag Recommended line sizes OD copper, inchesEquivalent lengths feet for various pipe fittings Variable Fan Speed Control Materials Supplied Fan Speed Control SystemsVariable Fan Speed Control Piping Fan speed suction pressure transducer settings Variable Fan Speed ChargingDPN000349 Rev DPN001726 Liebert Lee-Temp Controlled Materials Supplied Liebert Lee-Temp Leak Check and Evacuation ProcedureLiebert Lee-Temp Piping 407C Liebert Lee-Temp suction pressure transducer settingsLiebert Lee-TempCharging Factory Piping Optional Piping Field Piping DPN001725 Condenser Factory Piping Field Piping Factory Piping Adjustment Water Regulating ValveRefrigerant control settings psi kPa Motorized Ball Valve-Digital Scroll CompressorsManual Flushing ControlControl Method StartupLocation Manual ControlPump and Drycooler Drycooler InstallationDrycooler Location Glycol Piping General GuidelinesRoom dew point temperatures Dry Bulb Wet Bulb Relative Dew Point HumidityVolume in standard Type L copper piping Filling InstructionsExpansion Tanks, Fluid Relief Valves and Other Devices Preparing the System for FillingGlycol Solutions Ethylene glycol concentrationsFilling the System For expansion tank dimensions, see on 43-3/16 43-9/16 110 5mmSee Note 30-1/4 483mm 1097mmMounting hole dimensional data Drycooler dataGlycol pump data Pump Pump Suction Pump Discharge Connection,Field Piping General arrangement-Glycol-cooled models with digital scroll Expansion Tank Field-Installed at Pressure Motor Ball Valve-Digital Scroll Compressors Testing Valve FunctionGlycol Regulating Valve Chilled Water Models WAY Valve Air-Cooled Condensing Units Water/Glycol-Cooled Condensing UnitsRefrigerant Loop Model Lb kg Unit refrigerant chargeR407C Charge Line coupling sizes Line charges refrigerant per 100 ft m of Type L copper tubeRecommended refrigerant lines R407C sizes OD copper Quick Connect Fittings Unit Dimensions See Table Outdoor Air-Cooled Condensing UnitsPFCZ42A-L PFCZ41A-L Outdoor air-cooled condensing unit-top air discharge models See Table152 Piping and electrical connections top air discharge36-1/4 38-1/2 Field-supplied unit disconnect switch Ton High Ambient Ton Quiet-LineInstalling the Indoor Condensing Unit Model Net Weight 60 Hz 50 Hz Lb kg MC40A MC39ACentrifugal Air-Cooled Condensing Units Indoor centrifugal condensing unitDucting Airflow CFM CMHPiping Connections Wire connections from evaporator DPN000207Rev0 ModTon centrifugal air-cooled condensing unit dimensional data AIR Cooled Water Cooled Water and Glycol-Cooled Condensing Units Piping ConsiderationsTon Connection Sizes Condenser Water RequirementsGlycol Systems Ton water/glycol-cooled condensing unitDPN000209 Ton water/glycol-cooled condensing unit dimensional data WATER/GLYCOL Temperature Gauge Pressure Psig KPa R407C RefrigerantExample Temperature Pressure Gauge Psig KPaCalculating Subcooling Page Ne t Ppor t Is tTwor k Care
Related manuals
Manual 60 pages 24.1 Kb Manual 88 pages 36.41 Kb Manual 32 pages 13.16 Kb Manual 22 pages 3.64 Kb Manual 76 pages 17.32 Kb Manual 184 pages 52.9 Kb

3000 specifications

The Emerson 3000 is a cutting-edge control system designed to enhance the efficiency, reliability, and precision of industrial operations. Employed across various sectors such as oil and gas, pharmaceutical, food and beverage, and power generation, the Emerson 3000 has gained recognition for its robustness and versatility.

One of the main features of the Emerson 3000 is its advanced process control capability. With integrated control algorithms, it can optimize complex processes in real-time, resulting in significant improvements in production rates and reduced operational costs. The system's predictive analytics capabilities enable operators to anticipate equipment failures and maintenance needs, allowing for proactive management and minimizing downtime.

The Emerson 3000 features a modular architecture, providing flexibility for scaling and customization. Operators can easily tailor the system to fit specific application needs, whether it requires additional control loops or integration with other systems. This adaptability is particularly beneficial for facilities planning for future expansions or modifications.

Another technology highlight of the Emerson 3000 is its seamless integration with the latest Internet of Things (IoT) advancements. The system is designed to communicate effectively with a variety of smart devices and sensors, harnessing data to create insightful analytics that drive operational excellence. This connectivity empowers businesses to leverage big data for improved decision-making and increased agility.

Additionally, the Emerson 3000 incorporates state-of-the-art cybersecurity measures to safeguard critical data and operations. With built-in security protocols and regular updates, the system protects against emerging cyber threats, ensuring the integrity of the control network.

User experience is also a focal point of the Emerson 3000. The intuitive graphical user interface presents complex data in a user-friendly format, making it easier for operators to monitor system performance and respond to alerts quickly. This ease of use contributes to enhanced safety and operational efficiency.

In summary, the Emerson 3000 represents a fusion of advanced process control, modular design, IoT connectivity, robust cybersecurity, and user-centric interface, making it an ideal choice for industries seeking to enhance their operational performance while adapting to ever-evolving technological landscapes.