GE EPM 6000 Multi-function Power Metering System instruction manual Power Factor, Apparent power

Page 27

CHAPTER 2: ELECTRICAL BACKGROUND

So keeping the var content low allows a line to carry its full capacity of watts. In order to encourage customers to keep VAR requirements low, most utilities impose a penalty if the var content of the load rises above a specified value.

2.4.2Power Factor

A common method of measuring reactive power requirements is power factor. Power factor can be defined in two different ways. The more common method of calculating power factor is the ratio of the real power to the apparent power. This relationship is expressed in the following formula:

Total PF =

-------real-----------power----------------------

=

watts-------------

(EQ 2.1)

 

apparent power

 

VA

 

This formula calculates a power factor quantity known as Total Power Factor. It is called Total PF because it is based on the ratios of the power delivered. The delivered power quantities will include the impacts of any existing harmonic content. If the voltage or current includes high levels of harmonic distortion the power values will be affected. By calculating power factor from the power values, the power factor will include the impact of harmonic distortion. In many cases this is the preferred method of calculation because the entire impact of the actual voltage and current are included.

A second type of power factor is Displacement Power Factor. Displacement PF is based on the angular relationship between the voltage and current. Displacement power factor does not consider the magnitudes of voltage, current or power. It is solely based on the phase angle differences. As a result, it does not include the impact of harmonic distortion. Displacement power factor is calculated using the following equation:

Displacement PF = cos θ

(EQ 2.2)

where θ is the angle between the voltage and the current (see FIGURE 2–9: Voltage and Complex Current on page 2–12).

In applications where the voltage and current are not distorted, the Total Power Factor will equal the Displacement Power Factor. But if harmonic distortion is present, the two power factors will not be equal.

EPM 6000 MULTI-FUNCTION POWER METERING SYSTEM – USER GUIDE

2–13

Image 27
Contents Chapter Page Table of Contents Using the Meter Miscellaneous TOC-4 Introduction DescriptionHighlights EPM 6000 Highlights Utility Peak Demand FeaturesUniversal Voltage Inputs Current InputsEPM 6000 Measured Values Measured ValuesOrdering Order CodesEPM 6000 Order Codes Specifications Inputs/OutputsMetering Environmental CommunicationsMechanical Parameters Approvals Type TestingThree-Phase Power Measurement Wye Connection Three-Phase System ConfigurationsVcn Common Phase Voltages on Wye ServicesDelta Connection Three-Phase Delta Winding RelationshipThree-Phase, Four-Wire Delta Phasors Blondells Theorem and Three-Phase MeasurementPhase B Phase C Node n Phase a Electrical Background Power, Energy, and Demand PowerEnergy Power Use Over Time Demand Power and Energy Relationship Over TimeEnergy Use and Demand Intervals Real, Reactive, and Apparent Power Reactive Energy and Power FactorApparent power Power FactorHarmonics of a Non-Sinusoidal Waveform Harmonic DistortionVoltage and Current Monitoring Inductive and Capacitive ImpedanceWaveform Capture Typical Power Quality Problems Power QualityElectrical Background Dimensions Mechanical InstallationAnsi and DIN Mounting Panel Cutouts Ansi Installation StepsAnsi Mounting Procedure DIN Installation StepsDIN Mounting Procedure Installation Considerations Electrical InstallationCT Leads Pass-Through No Meter Termination CT Leads Terminated to MeterQuick Connect Crimp CT Terminations Voltage and Power Supply ConnectionsVoltage Connection Ground ConnectionsWiring Diagrams 4-Wire Wye with no PTs and 3 CTs, 3 Element 2 Wye, 4-Wire with no PTs and 3 CTs, 3 Element10 4-Wire Wye with no PTs and 3 CTs, 2.5 Element 3 Wye, 4-Wire with no PTs and 3 CTs, 2.5 Element11 4-Wire Wye with 3 PTs and 3 CTs, 3 Element 4 Wye, 4-Wire with 3 PTs and 3 CTs, 3 Element12 4-Wire Wye with 2 PTs and 3 CTs, 2.5 Element 5 Wye, 4-Wire with 2 PTs and 3 CTs, 2.5 Element13 3-Wire Delta with no PTs and 2 CTs Delta, 3-Wire with no PTs and 2 CTs14 3-Wire Delta with 2 PTs and 2 CTs Delta, 3-Wire with 2 PTs and 2 CTsCurrent-Only Measurement Three-Phase Current-Only Measurement Dual-Phase Current-Only Measurement Single-Phase Communications Setup IrDA COM1 Port3 RS485 COM2 Port 16 RS485 Communications Installation Faceplate Elements Front Panel InterfaceFaceplate Buttons Using the Meter% of Load Bar Segments Percentage of Load BarEPM 6000 Accuracy Test Constants Watt-Hour Accuracy Testing VerificationConfiguring the Meter via the Front Panel OverviewStart Up Main Menu Reset Mode and Password EntryUsing the Meter Using the Meter Configuring the Scroll Feature Changing Settings in Configuration ModeProgramming the Configuration Mode Screens Configuring the CT Setting Value for amps is a product of the Ct-nand the Ct-Svalues Configuring the PT SettingConfiguring the Connection Setting Configuring the Communication Port Setting Address Using the Meter Operating Mode Parameter Readings Operating ModeUsing the Meter Modbus Communications Memory Map DescriptionMemory Map HEX Range Units or Comments THD Block7 Description 1 Format Range 7532 PT denominator Secondary Readings Section Modbus Memory Map NotesCommunications Modbus Memory Map Data Formats DNP Point Mapping DNP Point MapsDNP Point Mapping Sheet 1 DNP Point Mapping Sheet 2 DNP Point Map Notes DNP Implementation Data Link LayerTransport Layer Following function codes are implemented on the EPM Application LayerDNP Objects and Variations Binary Output Status Object 10, VariationControl Relay Output Object 12, Variation 5 16-Bit Analog Input Without Flag Object 30, Variation 4 32-Bit Binary Counter Without Flag Object 20, VariationInternal Indications Object 80, Variation Class 0 Data Object 60, VariationCommunications Introduction Navigation MapsMain Menu Navigation Main Menu ScreensOperating Mode Navigation Operating Mode ScreensReset Mode Navigation Reset Mode ScreensConfiguration Mode Screens Revision History Release DatesChanges to the Manual Major Updates for 1601-0215-A2 GE Multilin Warranty WarrantyIndex Irda Power Supply Wiring