Bryant 355CAV installation instructions Gas Piping, Fire or Explosion Hazard

Page 23

NOTE: Side return-air openings can ONLY be used in Upflow configurations. Install filter(s) as shown in Fig. 24.

For bottom return-air applications, filter may need to be cut to fit some furnace widths. Install filter as shown in Fig. 25.

2.Rotate front filler panel downward to release holding tabs.

3.Remove bottom closure panel.

4.Reinstall front filler panel and screws.

Gas Piping

1712-IN. (444mm) WIDE

CASINGS ONLY:

INSTALL FIELD-SUPPLIED FILTER FILLER STRIP UNDER FILTER.

3

(76mm)

24 1/2

(533mm)

1

(25.4mm)

21-IN. (533mm) WIDE CASINGS ONLY: SUPPORT RODS (3) EXTEND 1/4" (6mm) ON EACH SIDE OF FILTER AND REST ON CASING FLANGE

Gas piping must be installed in accordance with national and local codes. Refer to NFGC in the U.S. Canadian installations must be made in accordance with CAN/CSA-B149.1-05 and all authorities having jurisdiction. Gas supply line should be a separate line running directly from meter to furnace, if possible. Refer to Table 3 for recommended gas pipe sizing. Risers must be used to connect to furnace and to meter. Support all gas piping with appropriate straps, hangers, etc. Use a minimum of one hanger every 6 ft. (1.8M). Joint compound (pipe dope) should be applied sparingly and only to male threads of joints. Pipe dope must be resistant to propane gas.

!WARNING

FIRE OR EXPLOSION HAZARD

Failure to follow this warning could result in personal injury, death, or property damage.

355CAV

WASHABLE

FILTER

FILTER

FILTER RETAINER

SUPPORT

A00290

Fig. 25 - Bottom Filter Arrangement

NOTE: Remove and discard bottom closure panel when bottom inlet is used.

Bottom Closure Panel

These furnaces are shipped with bottom closure panel installed in bottom return-air opening. This panel MUST be in place when side return air is used.

To remove bottom closure panel, perform following:

1.Tilt or raise furnace and remove two screws holding front filler panel. (See Fig. 26.)

-Connect gas pipe to furnace using a backup wrench to avoid damaging gas controls.

-Gas valve shutoff switch MUST be facing forward or tilted upward.

-Never purge a gas line into a combustion chamber. Never test for gas leaks with an open flame. Use a commercially available soap solution made specifically for the detection of leaks to check all connections.

-Use proper length of pipe to avoid stress on gas control manifold.

-If a flexible connector is required or allowed by authority having jurisdiction, black iron pipe shall be installed at furnace gas valve and extend a minimum of 2 in. (51 mm) outside furnace casing.

-Protect gas valve from water and debris. Gas valve inlet and/or inlet piping must remain capped until gas supply line is permanently installed to protect the valve from moisture and debris. Also, install a sediment trap in the gas supply piping at the inlet to the gas valve.

Install a sediment trap in riser leading to furnace. Trap can be installed by connecting a tee to riser leading to furnace so straight-through section of tee is vertical. Then connect a capped nipple into lower end of tee. Capped nipple should extend below level of gas controls. Place a ground joint union between gas control manifold and manual gas shutoff valve. (See Fig. 27.)

An accessible manual shutoff valve MUST be installed external to furnace casing and within 6 ft. (1.8M) of furnace. A 1/8-in. NPT (3 mm) plugged tapping, accessible for test gauge connection, MUST be installed immediately upstream of gas supply connection to furnace and downstream of manual shutoff valve.

Gas line grommet (factory-supplied loose parts bag) should be used when installing gas piping. Gas line entry hole filler plug should be installed in unused gas line entry hole. (See Fig. 28.)

23

Image 23
Contents Installation Instructions Required Notice for Massachusetts Installations Safety Considerations Table of ContentsEnvironmental Hazard Dimensions In. / mm355CAV Clearances to Combustibles Unit Damage Hazard Electrostatic Discharge ESD PrecautionsCodes and Standards IntroductionProperty Damage Hazard ApplicationsUpflow Application Condensate Trap Tubing Alternate Upflow Orientation Condensate Trap Alternate Upflow OrientationCarbon Monoxide Poisoning Hazard Condensate Trap Freeze Protection Upper Inducer Housing Drain ConnectionCondensate Trap Field Drain Attachment Condensate Trap Location Downflow ApplicationsHorizontal Left SUPPLY-AIR Discharge Applications Horizontal Left Tube ConfigurationCombustion AIR Intake Vent Unit Operation Hazard Property DamageConstruct a Working Platform Condenste Trap Field Drain Attachment Horizontal Right SUPPLY-AIR Discharge ApplicationsLocation Prohibit Installation on BackFIRE, EXPLOSION, Injury or Death Hazard Fire or Death HazardHazardous Locations Leveling Legs If Desired InstallationInstallation in Upflow or Downflow Applications Installation in Horizontal ApplicationsFurnace, Plenum, and Subbase Installed on a Angle AIR Ducts Unit MAY not Operate Fire HazardFIRE, Carbon Monoxide and Poisoning Hazard Fire or Explosion Hazard Gas PipingRemoving Bottom Closure Panel Electrical Shock Hazard WiringElectrical Shock and Fire Hazard Disconnect Switch and FurnaceRemoval of Existing Furnaces from Common Vent Systems AccessoriesFire or Electrical Shock Hazard Fire and Explosion Hazard AIR for Combustion and VentilationPipe Fittings Cement Description Marked on Primers Combustion-Air and Vent Pipe DiameterFurnace Control Direct Vent Termination Clearance Ventilated Combustion Air Vent Termination Clearance Vent Pipe Termination for Ventilated Combustion Air System Unit Corrosion Hazard Combustion AIR PipeCombustion Air Termination Ventilated Combustion Air Option Attachment of Combustion Air Intake Housing Plug FittingAttachment of Vent Pipe Vent PipeCombustion Air Termination-Direct Vent / 2-Pipe System Carbon Monoxide Poisoning Property Damage Hazard304.8mm minimum 76.2mm minimum Two-Pipe Termination Kit Direct Vent / 2-Pipe System Only Vent TerminationExtended Exposed Sidewall Pipes Vent Termination Kit Direct Vent / 2-Pipe System OnlyWinter Design Number of 90 Elbows Btuh Maximum Allowable Pipe Length Ft MDirect Vent 2-Pipe Only Personal Injury Hazard Condensate DrainMulti-venting and Vent Terminations ApplicationAdditional Setup Switches SW4 START-UP, Adjustment and Safety CheckAir Conditioning A/C Setup Switches Continuous Fan CF Setup SwitchesPrime Condensate Trap with Water Example of Setup Switch in Off PositionWiring Diagram Furnace Setup Switch Description Inducer Housing Drain TubePurge Gas Lines Sequence of OperationTwo-Stage Thermostat and Two-Stage Medium/High Heating Two-Stage Thermostat and Two-Stage Low / High HeatingThermidistat Mode Heat Pump Super Dehumidify ModeContinuous Blower Mode Continuous Blower Speed Selection from ThermostatStep-Modulating Furnace with Single-Speed Air Conditioning Furnace and Two-Speed Heat Pump Pump Furnace and Two-Speed Air ConditionerRedundant Automatic Gas Valve Set Gas Input RateBurner Orifice Altitude AVG. GAS 675 Burner Flame Altitude Derate Multiplier for USASet Thermostat Heat Anticipator Set Temperature RiseGas Rate cu Ft/Hr Check Primary Limit Control ChecklistCheck Safety Controls Check Pressure SwitchesCombustion and Vent Piping Checklist InstallationCatalog No. II355CAV---060---4
Related manuals
Manual 60 pages 10.1 Kb Manual 14 pages 23.93 Kb

355CAV specifications

The Bryant 355CAV is a state-of-the-art automated vertical machining center designed to enhance precision and efficiency in the manufacturing sector. Renowned for its robust construction, this machine is engineered to handle a broad spectrum of machining tasks, making it suitable for both small and large-scale production environments.

One of the standout features of the Bryant 355CAV is its advanced CNC control system, which provides users with exceptional ease of use. The intuitive user interface allows operators to program complex machining operations with minimal effort, significantly reducing setup times. The machine's high-speed spindle achieves impressive rotational speeds, which allows for quick material removal, ultimately optimizing productivity and throughput.

The Bryant 355CAV exhibits superior rigidity and stability due to its solid cast iron frame and carefully designed structural components. This construction minimizes vibrations during machining, ensuring that even the most intricate parts are produced with high accuracy. The machine's precision ground linear guideways further enhance its performance by providing smooth motion and high load capacity.

Equipped with a large work envelope, the Bryant 355CAV enables manufacturers to accommodate various part sizes and geometries. Additionally, its automatic tool changers can hold a variety of tools, thus facilitating quick transitions between different machining operations without requiring manual intervention. This flexibility is essential for meeting the diverse needs of modern manufacturing.

Another notable characteristic of the Bryant 355CAV is its energy-efficient design. It integrates modern technologies aimed at reducing power consumption while maintaining optimum performance. This environmentally conscious approach not only cuts operational costs but also aligns with the growing demand for sustainable manufacturing practices.

Moreover, the Bryant 355CAV features advanced monitoring capabilities, allowing operators to track machine performance in real time. Data analytics from these systems can be utilized to improve operational efficiency, reduce downtime, and enhance predictive maintenance protocols.

In summary, the Bryant 355CAV is a versatile, high-performance machining center that showcases cutting-edge features and technologies. Its combination of user-friendly controls, sturdy construction, energy efficiency, and advanced monitoring positions it as a vital asset for manufacturers aiming to elevate their productivity and precision in an increasingly competitive landscape.