Bryant 581A operation manual XII. Operating Sequence, Cooling, Units Without Economizer

Page 35

The same equation can be used to determine the occupied or maximum ventilation rate to the building. For example, an output of 3.6 volts to the actuator provides a base ventilation rate of 5% and an output of 6.7 volts provides the maximum ventilation rate of 20% (or base plus 15 cfm per person). Use Fig. 29 to determine the maximum setting of the CO2 sensor. For example, a 1100 ppm set point relates to a 15 cfm per person design. Use the 1100 ppm curve on Fig. 29 to find the point when the CO2 sensor output will be 6.7 volts. Line up the point on the graph with the left side of the chart to deter- mine that the range configuration for the CO2 sensor should be 1800 ppm. The EconoMi$er IV controller will output the

6.7volts from the CO2 sensor to the actuator when the CO2 concentration in the space is at 1100 ppm. The DCV set point may be left at 2 volts since the CO2 sensor voltage will be ignored by the EconoMi$er IV controller until it rises above the 3.6 volt setting of the minimum position potentiometer.

Once the fully occupied damper position has been deter- mined, set the maximum damper demand control ventilation potentiometer to this position. Do not set to the maximum position as this can result in over-ventilation to the space and potential high-humidity levels.

CO2 Sensor Configuration

The CO2 sensor has preset standard voltage settings that can be selected anytime after the sensor is powered up. See Table 29.

Use setting 1 or 2 for Bryant equipment. See Table 29.

1.Press Clear and Mode buttons. Hold at least 5 sec- onds until the sensor enters the Edit mode.

2.Press Mode twice. The STDSET Menu will appear.

3.Use the Up/Down button to select the preset number. See Table 29.

4.Press Enter to lock in the selection.

5.Press Mode to exit and resume normal operation.

The custom settings of the CO2 sensor can be changed any- time after the sensor is energized. Follow the steps below to change the non-standard settings:

1.Press Clear and Mode buttons. Hold at least 5 sec- onds until the sensor enters the Edit mode.

2.Press Mode twice. The STDSET Menu will appear.

3.Use the Up/Down button to toggle to the NONSTD menu and press Enter.

4.Use the Up/Down button to toggle through each of the nine variables, starting with Altitude, until the desired setting is reached.

5.Press Mode to move through the variables.

6.Press Enter to lock in the selection, then press Mode to continue to the next variable.

Dehumidification of Fresh Air with DCV Control

Information from ASHRAE (American Society of Heating, Refrigeration, and Air Conditioning Engineers) indicates that the largest humidity load on any zone is the fresh air introduced. For some applications, an energy recovery unit can be added to reduce the moisture content of the fresh air being brought into the building when the enthalpy is high. In most cases, the normal heating and cooling processes are more than adequate to remove the humidity loads for most commercial applications.

If normal rooftop heating and cooling operation is not adequate for the outdoor humidity level, an energy recovery and/or a dehumidification option should be considered.

XII. OPERATING SEQUENCE

A. Cooling, Units Without Economizer

When the thermostat calls for one stage of cooling, Y1 and G are energized. The indoor-fan contactor (IFC) and compres- sor contactor(s) (C.A1 and C.B1 on three-compressor units or C.A1 only on two-compressor units), and outdoor-fan contac- tors (OFC1 and OFC2 when outdoor temperature is above FCS [fan cycling switch] setting) are energized and the indoor-fan motor, compressor(s) (A1 and B1 on three- compressor units or A1 only on two-compressor units), and outdoor fans controlled by OFC1 are started. If the outdoor temperature is above the setting of the low temperature switch, the outdoor fans controlled by OFC2 are also started.

If more cooling is required, the thermostat will call for a sec- ond stage of cooling, energizing Y2. This will allow relay CR1 to energize, which in turn energizes the compressor contactor (C.C1 on three-compressor units or C.B1 on two-compressor units). The second stage compressor (C1 on three-compressor units or B1 on two-compressor units) is then started.

Table 29 — CO2 Sensor Standard Settings

 

 

 

VENTILATION

ANALOG

CO2

OPTIONAL

RELAY

SETTING

EQUIPMENT

OUTPUT

RATE

CONTROL RANGE

RELAY SETPOINT

HYSTERESIS

OUTPUT

 

 

 

(cfm/Person)

(ppm)

(ppm)

(ppm)

 

 

 

 

1

 

Proportional

Any

0-10V

0-2000

1000

50

 

4-20 mA

 

 

 

 

 

 

 

2

Interface w/Standard

Proportional

Any

2-10V

0-2000

1000

50

Building Control System

7-20 mA

 

 

 

 

 

 

3

 

Exponential

Any

0-10V

0-2000

1100

50

 

4-20 mA

 

 

 

 

 

 

 

4

 

Proportional

15

0-10V

0-1100

1100

50

 

4-20 mA

 

 

 

 

 

 

 

5

 

Proportional

20

0-10V

0- 900

900

50

 

4-20 mA

 

Economizer

 

 

 

 

 

6

Exponential

15

0-10V

0-1100

1100

50

 

 

4-20 mA

 

 

 

 

 

 

 

7

 

Exponential

20

0-10V

0- 900

900

50

 

4-20 mA

 

 

 

 

 

 

 

8

Health & Safety

Proportional

0-10V

0-9999

5000

500

4-20 mA

 

 

 

 

 

 

 

9

Parking/Air Intakes/

Proportional

0-10V

0-2000

700

50

Loading Docks

4-20 mA

 

 

 

 

 

 

LEGEND

ppm — Parts Per Million

35

Image 35
Contents Installation Provide Unit Support ContentsSafety Considerations III. RIG and Place Unit II. Remove Shipping RailsRoof Curb Details Shipping Rail Removal Base Unit Dimensions Compressor Physical DataFan Motor and Drive Data Vertical Supply/Return Fan Motor and Drive Data Horizontal Supply/Return Horizontal Applications Vertical ConfigurationIV. Field Fabricate Ductwork Make Unit Duct ConnectionsVII. Trap Condensate Drain VI. Install Flue Hood and Inlet HoodVIII. Install GAS Piping IX. Make Electrical Connections Field Power SupplyField Control Wiring Manual Damper Assembly Install OUTDOOR-AIR HoodFLA MCA Mocp Electrical Data Units Without Convenience OutletElectrical Data Units With Optional Convenience Outlet Outdoor-Air Hood Details XII. NON-FUSED Disconnect XIII. Install ALL AccessoriesSTART-UP III. Refrigerant Service PortsVI. Internal Wiring PRE-START-UPXI. GAS Heat VIII. Condenser Fans and MotorsIX. RETURN-AIR Filters OUTDOOR-AIR Inlet ScreensFan Performance 581A210 Medium Heat Vertical Discharge Units Fan Performance 581A240 Low Heat Vertical Discharge Units Fan Performance 581A210 High Heat Vertical Discharge UnitsFan Performance 581A240 High Heat Vertical Discharge Units Fan Performance 581A240 Medium Heat Vertical Discharge UnitsFan Performance 581A300 Medium Heat Vertical Discharge Units Fan Performance 581A300 Low Heat Vertical Discharge UnitsGeneral Notes for Tables Fan Performance 581A300 High Heat Vertical Discharge UnitsFan Performance 581A210 Low Heat Horizontal Discharge Units Fan Performance 581A240 Low Heat Horizontal Discharge Units Fan Performance 581A210 High Heat Horizontal Discharge UnitsFan Performance 581A240 High Heat Horizontal Discharge Units Fan Performance 581A300 Low Heat Horizontal Discharge Units Fan Performance 581A300 High Heat Horizontal Discharge Units Power Exhaust Fan PerformanceOperation Air Quantity Limits Evaporator Fan Motor SpecificationsXII. Optional ECONOMI$ER Accessory/FIOP Static Pressure in. wgFan Rpm at Motor Pulley Settings EconoMi$er IV Controller Wiring and Operational ModesEconoMi$er IV Component Locations Exploded View Supply-Air Temperature Sensor LocationEconoMi$er IV Wiring Enthalpy Changeover Set Points Page Cooling, Units Without Economizer CO2 Sensor Standard SettingsXII. Operating Sequence Cooling, Units With EconoMi$er Service CleaningCoil Maintenance and Cleaning Recommendation Heating, Units Without EconomizerMain Burner Condensate DrainFilters Outdoor-Air Inlet ScreensII. Lubrication III. Evaporator FAN Service and ReplacementVI. CONDENSER-FAN Adjustment Fig IV. Evaporator FAN Performance AdjustmentBelt Tension Adjustment Belt Tension AdjustmentVIII. Refrigerant Charge VII. Power FailureIX. GAS Valve Adjustment XII. Protective Devices Main BurnersXI. Filter Drier XIV. Control Circuit XV. Replacement PartsXIII. Relief Devices Low Voltage Control Schematic Low Voltage Control Schematic Power Schematic Component Arrangement Cooling Service Analysis Troubleshooting Unit TroubleshootingProblem Cause Remedy Heating Service AnalysisIGC Control Heating and Cooling II. ECONOMI$ER IV Troubleshooting EconoMi$er IV Input/Output Logic EconoMi$er IV Troubleshooting CompletionCopyright 2005 Bryant Heating & Cooling Systems Catalog no Page Page Page Pressures START-UP ChecklistTemperatures Electrical
Related manuals
Manual 40 pages 46.88 Kb

581A specifications

The Bryant 581A is a pivotal model in the realm of heating, ventilation, and air conditioning (HVAC) systems, known for its robust performance and energy efficiency. As part of the Bryant product lineup, the 581A offers a blend of innovative technologies combined with reliable engineering, making it a suitable choice for both residential and light commercial applications.

One of the standout features of the Bryant 581A is its outstanding energy efficiency. With a Seasonal Energy Efficiency Ratio (SEER) rating of up to 16, this model meets Energy Star qualifications, ensuring that homeowners can enjoy lower utility bills while helping to reduce their environmental footprint. The efficiency is further enhanced by the unit’s environmentally friendly refrigerant, which not only improves performance but also aligns with modern sustainability standards.

Another key characteristic of the Bryant 581A is its durable construction. Designed to withstand various weather conditions, the unit features a robust cabinet that protects internal components. This durability not only prolongs the lifespan of the system but also minimizes the need for frequent maintenance or repairs. The coil design is optimized for heat transfer efficiency, enhancing the unit's overall performance in both cooling and heating modes.

In terms of technology, the Bryant 581A incorporates advanced control systems that enable precise temperature regulation. The multi-stage cooling capabilities ensure that the system can adapt to varying temperature demands, providing comfort in all seasons. Additionally, the model is compatible with smart thermostats, allowing homeowners to control their HVAC system remotely via smartphone or other connected devices.

Noise reduction is another aspect where the Bryant 581A excels. Equipped with a variable-speed compressor and sound-dampening features, this model operates quietly, minimizing disruption in residential or office environments. This focus on acoustic comfort makes it an ideal choice for those who value a peaceful living or working space.

Overall, the Bryant 581A represents an excellent balance of efficiency, durability, and modern technology. With features aimed at enhancing user comfort and reducing operational costs, it stands out as a reliable solution in the competitive HVAC market. Whether for new installations or replacements, the Bryant 581A is a testament to the brand’s commitment to quality and innovation in home climate control.