38-22
Cisco IE 2000 Switch Software Configuration Guide
OL-25866-01
Chapter 38 Configuring Standard QoS
Information About Standard QoS
You assign each packet that flows through the switch to a queue and to a threshold. Specifically, you map
DSCP or CoS values to an ingress queue and map DSCP or CoS values to a threshold ID. You use the
mls qos srr-queue input dscp-map queue queue-id {dscp1...dscp8 | threshold threshold-id
dscp1...dscp8} or the mls qos srr-queue input cos-map queue queue-id {cos1...cos8 | threshold
threshold-id cos1...cos8} global configuration command. You can display the DSC P input queue
threshold map and the CoS input queue threshold map by using the show mls qos maps privileged EXEC
command.

WTD Thresholds

The queues use WTD to support distinct drop percentages for different traffic classes. Each queue has
three drop thresholds: two configurable (explicit) WTD thresholds and one nonconfigurable (implicit)
threshold preset to the queue-full state. You assign the two explicit WTD threshold percentages for
threshold ID 1 and ID 2 to the ingress queues by using the mls qos srr-queue input threshold queue-id
threshold-percentage1 threshold-percentage2 global configuration command. Each threshold value is a
percentage of the total number of allocated buffers for the queue. The drop threshold for threshold ID 3
is preset to the queue-full state, and you cannot modify it. For more information about how WTD works,
see the “Weighted Tail Drop” section on page 38-19.

Buffer and Bandwidth Allocation

You define the ratio (allocate the amount of space) with which to divide the ingress buffers between the
two queues by using the mls qos srr-queue input buffers percentage1 percentage2 global configuration
command. The buffer allocation together with the bandwidth allocation contro l how much data can be
buffered and sent before packets are dropped. You allocate bandwidth as a percentage by using the mls
qos srr-queue input bandwidth weight1 weight2 global configuration command. The ratio of the
weights is the ratio of the frequency in which the SRR scheduler sends packets from each queue.

Priority Queueing

You can configure one ingress queue as the priority queue by using the mls qos srr-queue input
priority-queue queue-id bandwidth weight global configuration command. The priority queue should
be used for traffic (such as voice) that requires guaranteed delivery because this queue is guaranteed part
of the bandwidth regardless of the load on the internal ring.
SRR services the priority queue for its configured weight as specified by the bandwidth keyword in the
mls qos srr-queue input priority-queue queue-id bandwidth weight global configuration command.
Then, SRR shares the remaining bandwidth with both ingress queues and services them as specified by
the weights configured with the mls qos srr-queue input bandwidth weight1 weight2 global
configuration command.
You can combine the commands described in this section to prioritize traffic by placing packets with
particular DSCPs or CoSs into certain queues, by allocating a large queue size or by servicing the queue
more frequently, and by adjusting queue thresholds so that packets with lower priorities are dropped. For
configuration information, see the “Configuring Ingress Queue Characteristics” section on page 38-49.
Queueing and Scheduling on Egress Queues
Figure 38-9 shows the queueing and scheduling flowchart for egress ports.
Note If the expedite queue is enabled, SRR services it until it is empty before servicing the other three queues.