46-4
Cisco IE 2000 Switch Software Configuration Guide
OL-25866-01
Chapter 46 Troubleshooting
Information for Troubleshooting
When multiple devices are attached to one port through hubs (for example, multiple CDP neighbors
are detected on a port), the Layer 2 traceroute fea ture is not supported. When more than one CDP
neighbor is detected on a port, the Layer 2 path is not identified, and an error message appear s.
IP Traceroute
You can use IP traceroute to identify the path that packets take through the network on a hop-by-hop
basis. The command output displays all network layer (Layer 3) devices, such as routers, that the traffic
passes through on the way to the destination.
Your switches can participate as the source or destination of the traceroute privileged EXEC command
and might or might not appear as a hop in the traceroute command output. If the switch is the destination
of the traceroute, it is displayed as the final destination in the traceroute output. Intermediate switches
do not show up in the traceroute output if they are only bridging the packet from one port to another
within the same VLAN. However, if the intermediate switch is a multilayer switch that is routing a
particular packet, this switch shows up as a hop in the tracerout e output.
The traceroute privileged EXEC command uses the Time To Live (TTL) field in the IP header to cause
routers and servers to generate specific return messages. Traceroute starts by sending a User Datagram
Protocol (UDP) datagram to the destination host with the TTL field set to 1. If a router finds a TTL value
of 1 or 0, it drops the datagram and sends an Internet Control Message Protocol (ICMP)
time-to-live-exceeded message to the sender. Traceroute finds the address of the first hop by examining
the source address field of the ICMP time-to-live-exceeded message.
To identify the next hop, traceroute sends a UDP packet with a TTL value of 2. The first router
decrements the TTL field by 1 and sends the datagram to the next router. The second router sees a TTL
value of 1, discards the datagram, and returns the time-to-live-exceeded message to the source. This
process continues until the TTL is incremented to a value large enough for the datagram to reach the
destination host (or until the maximum TTL is reached).
To learn when a datagram reaches its destination, traceroute sets the UDP destination port number in the
datagram to a very large value that the destination host is unlikely to be using. When a host receives a
datagram destined to itself containing a destination port number that is unused locally, it sends an ICMP
port-unreachable error to the source. Because all errors except port-unreachable errors come from
intermediate hops, the receipt of a port-unreachable error means that this message was sent by the
destination port.
TDR
You can use the Time Domain Reflector (TDR) feature to diagnose and resolve cabling problems. When
running TDR, a local device sends a signal through a cable and compares the reflected signal to the initial
signal.
TDR is supported only on 10/100 and 10/100/1000 copper Ethernet ports. It is not supported on SFP
module ports.
TDR can detect these cabling problems:
Open, broken, or cut twisted-pair wires—The wires are not connected to the wires from the remote
device.
Shorted twisted-pair wires—The wires are touching each other or the wires from the rem ote device.
For example, a shorted twisted pair can occur if one wire of the twisted pair is soldered to the other
wire.
If one of the twisted-pair wires is open, TDR can find the length at which the wire is open.