CY7C1380DV25, CY7C1380FV25 CY7C1382DV25, CY7C1382FV25

instruction. When HIGH, it will enable the output buffers to drive the output bus. When LOW, this bit will place the output bus into a High-Z condition.

This bit can be set by entering the SAMPLE/PRELOAD or EXTEST command, and then shifting the desired bit into that cell, during the Shift-DR state. During Update-DR, the value loaded into that shift-register cell will latch into the preload register. When the EXTEST instruction is entered, this bit will

directly control the output Q-bus pins. Note that this bit is preset HIGH to enable the output when the device is powered up, and also when the TAP controller is in the Test-Logic-Reset state.

Reserved

These instructions are not implemented but are reserved for future use. Do not use these instructions.

TAP Timing

1

2

Test Clock

 

(TCK)

tTH

 

tTMSS

tTMSH

Test Mode Select

 

(TMS)

 

tTDIS

tTDIH

Test Data-In

 

(TDI)

 

Test Data-Out

 

(TDO)

 

3

tTL tCYC

4

5

6

 

 

 

tTDOV

tTDOX

DON’T CARE

UNDEFINED

TAP AC Switching Characteristics

Over the Operating Range [10, 11]

Parameter

Description

Min.

Max.

Unit

Clock

 

 

 

 

tTCYC

TCK Clock Cycle Time

50

 

ns

tTF

TCK Clock Frequency

 

20

MHz

tTH

TCK Clock HIGH time

20

 

ns

tTL

TCK Clock LOW time

20

 

ns

Output Times

 

 

 

 

 

 

 

 

 

tTDOV

TCK Clock LOW to TDO Valid

 

10

ns

tTDOX

TCK Clock LOW to TDO Invalid

0

 

ns

Setup Times

 

 

 

 

 

 

 

 

 

tTMSS

TMS Setup to TCK Clock Rise

5

 

ns

tTDIS

TDI Setup to TCK Clock Rise

5

 

ns

tCS

Capture Setup to TCK Rise

5

 

ns

Hold Times

 

 

 

 

tTMSH

TMS Hold after TCK Clock Rise

5

 

ns

tTDIH

TDI Hold after Clock Rise

5

 

ns

tCH

Capture Hold after Clock Rise

5

 

ns

Notes:

10.tCS and tCH refer to the setup and hold time requirements of latching data from the boundary scan register.

11.Test conditions are specified using the load in TAP AC test conditions. tR/tF = 1ns.

Document #: 38-05546 Rev. *E

Page 13 of 29

[+] Feedback

Page 13
Image 13
Cypress CY7C1380DV25 TAP Timing, TAP AC Switching Characteristics, Parameter Description Min Max Unit Clock, Hold Times

CY7C1382DV25, CY7C1380DV25, CY7C1382FV25, CY7C1380FV25 specifications

The Cypress CY7C1380FV25, CY7C1382FV25, CY7C1380DV25, and CY7C1382DV25 are high-performance static random access memory (SRAM) devices distinguished by their reliability and efficiency. These components are designed for applications requiring fast data storage and retrieval, making them ideal for embedded systems, communication devices, and various consumer electronics.

One of the main features of these SRAMs is their access time. The CY7C1380FV25 and CY7C1382FV25 models come with a super-fast access time of 25 nanoseconds, ensuring that data can be retrieved with minimal delay. This characteristic is crucial for high-speed applications, such as networking equipment and automotive systems, where rapid data processing is essential.

Both families of devices offer a competitive data width configuration, with CY7C1380 series providing 8 bits and CY7C1382 series providing 16 bits. This flexibility allows designers to choose the appropriate configuration based on their specific application requirements. Additionally, they support a wide voltage range for ease of integration into various systems.

The CY7C1380FV25 and CY7C1380DV25 devices feature low power consumption, which is vital for battery-operated devices. With their advanced CMOS technology, they exhibit reduced static power requirements, helping to prolong battery life and improve overall system efficiency. The IDD (supply current) ratings are particularly low, making them suitable for energy-sensitive applications.

A notable characteristic of the Cypress memory devices is their asynchronous read and write operations, providing simple interfacing in a variety of designs. They are designed to operate under a wide range of temperature conditions; thus, they are well-suited for industrial applications where temperature fluctuations might be a concern.

Furthermore, the CY7C1382FV25 and CY7C1382DV25 models include features like burst mode capability, enabling faster sequential access, which is beneficial for high-speed data processing tasks. This allows these SRAMs to deliver enhanced performance critical in applications like video processing and real-time data acquisition.

In summary, the Cypress CY7C1380FV25, CY7C1382FV25, CY7C1380DV25, and CY7C1382DV25 are distinguished by their fast access times, low power consumption, and flexible data widths. Their advanced technologies and characteristics make them a reliable choice for a diverse range of high-performance applications, ensuring that engineers can effectively address their design challenges while meeting the demands of modern electronics.