CYV15G0104TRB

the device configuration interface. When RXPLLPDA = 0, the receive PLL and analog circuitry of the channel is disabled. The transmit channel is controlled by the TOE1B and the TOE2B latches via the device configuration interface. The reclocker function is controlled by the ROE1A and the ROE2A latches via the device configuration interface. When a driver is disabled via the configuration interface, it is internally powered down to reduce device power. If both serial drivers for a channel are in this disabled state, the associated internal logic for that channel is also powered down. When the reclocker serial drivers are disabled, the reclocker function will be disabled, but the deserialization logic and parallel outputs will remain enabled.

Device Reset State

When the CYV15G0104TRB is reset by assertion of RESET, all state machines, counters, and configuration latches in the device are initialized to a reset state. See Table 4 for the initialize values of the configuration latches.

Following a device reset, it is necessary to enable the transmit and receive channels used for normal operation. This can be done by sequencing the appropriate values on the device configuration interface.[5]

Device Configuration and Control Interface

The CYV15G0104TRB is highly configurable via the configu- ration interface. The configuration interface allows the trans- mitter and reclocker to be configured independently. Table 4 lists the configuration latches within the device including the

initialization value of the latches upon the assertion of RESET. Table 5 shows how the latches are mapped in the device. Each row in the Table 5 maps to a 7-bit latch bank. There are 6 such write-only latch banks. When WREN = 0, the logic value in the DATA[6:0] is latched to the latch bank specified by the values in ADDR[2:0]. The second column of Table 5 specifies the channels associated with the corresponding latch bank. For example, the first three latch banks (0,1 and 2) consist of configuration bits for the reclocker channel A.

Latch Types

There are two types of latch banks: static (S) and dynamic (D). Each channel is configured by 2 static and 1 dynamic latch banks. The S type contain those settings that normally do not change for a given application, whereas the D type controls the settings that could change during the application's lifetime. The first and second rows of each channel (address numbers 0, 1, 5, and 6) are the static control latches. The third row of latches for each channel (address numbers 2 and 7) are the dynamic control latches that are associated with enabling dynamic functions within the device. Address numbers 3 and 4 are internal test registers.

Static Latch Values

There are some latches in the table that have a static value (i.e. 1, 0, or X). The latches that have a ‘1’ or ‘0’ must be configured with their corresponding value each time that their associated latch bank is configured. The latches that have an ‘X’ are don’t cares and can be configured with any value.

Table 4. Device Configuration and Control Latch Descriptions

Name

Signal Description

RXRATEA

Receive Clock Rate Select. The initialization value of the RXRATEA latch = 1. RXRATEA is used to select

 

the rate of the RXCLKA± clock output.

 

When RXRATEA = 1, the RXCLKA± clock outputs are complementary clocks that follow the recovered clock

 

operating at half the character rate. Data for the associated receive channels should be latched alternately on

 

the rising edge of RXCLKA+ and RXCLKA–.

 

When RXRATEA = 0, the RXCLKA± clock outputs are complementary clocks that follow the recovered clock

 

operating at the character rate. Data for the associated receive channels should be latched on the rising edge

 

of RXCLKA+ or falling edge of RXCLKA–.

SDASEL1A[1:0] Primary Serial Data Input Signal Detector Amplitude Select. The initialization value of the SDASEL1A[1:0] latch = 10. SDASEL1A[1:0] selects the trip point for the detection of a valid signal for the INA1± Primary Differential Serial Data Inputs.

When SDASEL1A[1:0] = 00, the Analog Signal Detector is disabled.

When SDASEL1A[1:0] = 01, the typical p-p differential voltage threshold level is 140 mV. When SDASEL1A[1:0] = 10, the typical p-p differential voltage threshold level is 280 mV. When SDASEL1A[1:0] = 11, the typical p-p differential voltage threshold level is 420 mV.

SDASEL2A[1:0] Secondary Serial Data Input Signal Detector Amplitude Select. The initialization value of the SDASEL2A[1:0] latch = 10. SDASEL2A[1:0] selects the trip point for the detection of a valid signal for the INA2± Secondary Differential Serial Data Inputs.

When SDASEL2A[1:0] = 00, the Analog Signal Detector is disabled

When SDASEL2A[1:0] = 01, the typical p-p differential voltage threshold level is 140 mV. When SDASEL2A[1:0] = 10, the typical p-p differential voltage threshold level is 280 mV. When SDASEL2A[1:0] = 11, the typical p-p differential voltage threshold level is 420 mV.

TRGRATEA Training Clock Rate Select. The initialization value of the TRGRATEA latch = 0. TRGRATEA is used to select the clock multiplier for the training clock input to the CDR PLL. When TRGRATEA = 0, the TRGCLKA± input is not multiplied before it is passed to the CDR PLL. When TRGRATEA = 1, the TRGCLKA± input is multiplied by 2 before it is passed to the CDR PLL. TRGRATEA = 1 and SPDSELA = LOW is an invalid state and this combination is reserved.

Document #: 38-02100 Rev. *B

Page 13 of 27

[+] Feedback

Page 13
Image 13
Cypress CYV15G0104TRB Device Configuration and Control Interface, Device Reset State, Latch Types, Static Latch Values