3 Configuring the Switch

Configuring Address Pools

You must configure IP address pools for each IP interface that will provide addresses to attached clients via the DHCP server.

Command Usage

First configure address pools for the network interfaces. Then you can manually bind an address to a specific client if required. However, note that any static host address must fall within the range of an existing network address pool. You can configure up to 8 network address pools, and up to 32 manually bound host address pools (i.e., one address per host pool).

When a client request is received, the switch first checks for a network address pool matching the gateway where the request originated (i.e., if the request was forwarded by a relay server). If there is no gateway in the client request (i.e., the request was not forwarded by a relay server), the switch searches for a network pool matching the interface through which the client request was received. It then searches for a manually configured host address that falls within the matching network pool. If no manually configured host address is found, it assigns an address from the matching network address pool. However, if no matching address pool is found the request is ignored.

When searching for a manual binding, the switch compares the client identifier and then the hardware address for DHCP clients. Since BOOTP clients cannot transmit a client identifier, you must configure a hardware address for this host type. If no manual binding has been specified for a host entry with a hardware address or client identifier, the switch will assign an address from the first matching network pool.

If the subnet mask is not specified for network or host address pools, the class A, B, or C natural mask is used (see page 3-227). The DHCP server assumes that all host addresses are available. You can exclude subsets of the address space by using the IP Excluded Address field on the DHCP Server General configuration page.

Command Attributes

Creating a New Address Pool

• Pool Name – A string or integer. (Range: 1-8 characters)

Setting the Network Parameters

IP – The IP address of the DHCP address pool.

Subnet Mask – The bit combination that identifies the network (or subnet) and the host portion of the DHCP address pool.

Setting the Host Parameters

IP – The IP address of the DHCP address pool.

Subnet Mask – Specifies the network mask of the client.

Hardware Address – Specifies the MAC address and protocol used on the client. (Options: Ethernet, IEEE802, FDDI; Default: Ethernet)

3-190

Page 242
Image 242
Microsoft ES4625, ES4649 manual Configuring the Switch Configuring Address Pools, Creating a New Address Pool

ES4649, ES4625 specifications

The Microsoft ES4625 and ES4649 are advanced enterprise-grade servers designed to meet the demands of modern data centers. They blend cutting-edge technology with robust performance, making them an ideal choice for businesses that require reliable processing capabilities, enhanced storage solutions, and improved energy efficiency.

One of the standout features of the ES4625 is its powerful processing capability. Equipped with the latest Intel Xeon Scalable processors, the server can handle a significant workload, making it suitable for various applications, including virtualization, cloud computing, and big data analytics. The multi-core architecture allows for efficient parallel processing, thereby improving response times and overall system performance.

On the other hand, the ES4649 offers an even more powerful setup, with the option to support high core counts and a larger memory footprint. This feature is particularly beneficial for enterprises that run demanding applications requiring substantial processing power and memory capacity. Both models support DDR4 memory, ensuring faster data access and overall system efficiency.

Storage adaptability is another key characteristic of these servers. The ES4625 and ES4649 come with multiple drive bays supporting various storage options, including SSDs and traditional HDDs. This flexibility allows organizations to configure their storage according to their specific performance and capacity needs. With support for advanced storage technologies like NVMe, enterprises can achieve unparalleled data transfer speeds, which is crucial for data-intensive applications.

In terms of manageability, both models are equipped with Microsoft’s innovative management tools. The integration of these tools facilitates easy monitoring, troubleshooting, and maintenance of server health and performance, significantly reducing downtime. Moreover, the servers are designed with enhanced security features to protect against unauthorized access and data breaches, ensuring that sensitive information remains secure.

Energy efficiency is another critical characteristic of the ES4625 and ES4649. These servers are designed with power-saving technologies that reduce energy consumption without compromising performance. This aspect is particularly advantageous for businesses looking to lower their operational costs and carbon footprint.

Overall, the Microsoft ES4625 and ES4649 offer a compelling combination of performance, flexibility, and security. They are engineered to support the increasingly complex demands of modern enterprise environments, making them a valuable investment for organizations seeking reliable, high-performing server solutions. Whether for virtualized workloads, cloud services, or heavy data computations, these servers are designed to deliver exceptional results.