3 Configuring the Switch

Configuring OSPF Areas

An autonomous system must be configured with a backbone area, designated by area identifier 0.0.0.0. By default, all other areas are created as normal transit areas.

Routers in a normal area may import or export routing information about individual nodes. To reduce the amount of routing traffic flooded onto the network, you can configure an area to export a single summarized route that covers a broad range of network addresses within the area (page 3-241). To further reduce the amount of routes passed between areas, you can configure an area as a stub or a not-so-stubby area (NSSA).

Normal Area – A large OSPF domain should be broken up into several areas to increase network stability and reduce the amount of routing traffic required through the use of route summaries that aggregate a range of addresses into a single route. The backbone or any normal area can pass traffic between other areas, and are therefore known as transit areas. Each router in an area has identical routing tables. These tables may include area links, summarized links, or external links that depict the topology of the autonomous system.

Stub – A stub does not accept external routing information. Instead, an area border router adjacent to a stub can be configured to send a default external route into the stub for all destinations outside the local area or the autonomous system. This route will also be advertised as a single entry point for traffic entering the stub. Using a stub can significantly reduce the amount of topology data that has to be exchanged over the network.

backbone

backbone

area

ABR

ABR

area

ABR

stub

 

default external route

By default, a stub can only pass traffic to other areas in the autonomous system via the default external route. However, you also can configure an area border router to send Type 3 summary link advertisements into the stub.

NSSA – A not-so-stubby area (NSSA) is similar to a stub. It blocks most external routing information, and can be configured to advertise a single default route for traffic passing between the NSSA and other areas within the autonomous system (AS). However, an NSSA can also import external routes from one or more small routing domains that are not part of the AS, such as a RIP domain or locally configured static routes. This external AS routing information is generated by the NSSA’s ASBR and advertised only within the NSSA. By default, these routes are not flooded onto the backbone or into any other area by area border routers. However, the NSSA’s ABRs will convert NSSA external LSAs (Type 7) into external LSAs (Type-5) which are propagated into other areas within the AS.

3-238

Page 290
Image 290
Microsoft ES4625, ES4649 manual Configuring the Switch Configuring Ospf Areas, 238

ES4649, ES4625 specifications

The Microsoft ES4625 and ES4649 are advanced enterprise-grade servers designed to meet the demands of modern data centers. They blend cutting-edge technology with robust performance, making them an ideal choice for businesses that require reliable processing capabilities, enhanced storage solutions, and improved energy efficiency.

One of the standout features of the ES4625 is its powerful processing capability. Equipped with the latest Intel Xeon Scalable processors, the server can handle a significant workload, making it suitable for various applications, including virtualization, cloud computing, and big data analytics. The multi-core architecture allows for efficient parallel processing, thereby improving response times and overall system performance.

On the other hand, the ES4649 offers an even more powerful setup, with the option to support high core counts and a larger memory footprint. This feature is particularly beneficial for enterprises that run demanding applications requiring substantial processing power and memory capacity. Both models support DDR4 memory, ensuring faster data access and overall system efficiency.

Storage adaptability is another key characteristic of these servers. The ES4625 and ES4649 come with multiple drive bays supporting various storage options, including SSDs and traditional HDDs. This flexibility allows organizations to configure their storage according to their specific performance and capacity needs. With support for advanced storage technologies like NVMe, enterprises can achieve unparalleled data transfer speeds, which is crucial for data-intensive applications.

In terms of manageability, both models are equipped with Microsoft’s innovative management tools. The integration of these tools facilitates easy monitoring, troubleshooting, and maintenance of server health and performance, significantly reducing downtime. Moreover, the servers are designed with enhanced security features to protect against unauthorized access and data breaches, ensuring that sensitive information remains secure.

Energy efficiency is another critical characteristic of the ES4625 and ES4649. These servers are designed with power-saving technologies that reduce energy consumption without compromising performance. This aspect is particularly advantageous for businesses looking to lower their operational costs and carbon footprint.

Overall, the Microsoft ES4625 and ES4649 offer a compelling combination of performance, flexibility, and security. They are engineered to support the increasingly complex demands of modern enterprise environments, making them a valuable investment for organizations seeking reliable, high-performing server solutions. Whether for virtualized workloads, cloud services, or heavy data computations, these servers are designed to deliver exceptional results.