Stack Operations 2

For a description of how to use the CLI, see “Using the Command Line Interface” on page 4-1.For a list of all the CLI commands and detailed information on using the CLI, refer to “Command Groups” on page 4-10.

Remote Connections

Prior to accessing the switch’s onboard agent via a network connection, you must first configure it with a valid IP address, subnet mask, and default gateway using a console connection, DHCP or BOOTP protocol.

The IP address for this switch is obtained via DHCP by default. To manually configure this address or enable dynamic address assignment via DHCP or BOOTP, see “Setting an IP Address” on page 2-7.

Notes: 1. This switch supports four concurrent Telnet/SSH sessions.

2.Each VLAN group can be assigned its own IP interface address (page 2-7). You can manage the stack via any IP interface in the stack. In other words, the Master unit does not have to include an active port member of a VLAN interface used for management access.

After configuring the switch’s IP parameters, you can access the onboard configuration program from anywhere within the attached network. The onboard configuration program can be accessed using Telnet from any computer attached to the network. The switch can also be managed by any computer using a web browser (Internet Explorer 5.0 or above, or Netscape Navigator 6.2 or above), or from a network computer using SNMP network management software.

Note: The onboard program only provides access to basic configuration functions. To access the full range of SNMP management functions, you must use SNMP-based network management software.

Stack Operations

Up to eight 24-port or 48-port Gigabit switches can be stacked together as described in the Installation Guide. One unit in the stack acts as the Master for configuration tasks and firmware upgrade. All of the other units function in Slave mode, but can automatically take over management of the stack if the Master unit fails.

To configure any unit in the stack, first verify the unit number from the front panel of the switch, and then select the appropriate unit number from the web or console management interface.

Selecting the Stack Master

Note the following points about unit numbering:

When the stack is initially powered on, the Master unit is designated as unit 1 for a ring topology. For a line topology, the stack is simply numbered from top to bottom, with the first unit in the stack designated at unit 1. This unit identification number appears on the Stack Unit ID LED on the front panel of the switch. It can also be selected on the front panel graphic of the web interface, or from the CLI.

2-3

Page 43
Image 43
Microsoft ES4649, ES4625 manual Stack Operations, Remote Connections, Selecting the Stack Master

ES4649, ES4625 specifications

The Microsoft ES4625 and ES4649 are advanced enterprise-grade servers designed to meet the demands of modern data centers. They blend cutting-edge technology with robust performance, making them an ideal choice for businesses that require reliable processing capabilities, enhanced storage solutions, and improved energy efficiency.

One of the standout features of the ES4625 is its powerful processing capability. Equipped with the latest Intel Xeon Scalable processors, the server can handle a significant workload, making it suitable for various applications, including virtualization, cloud computing, and big data analytics. The multi-core architecture allows for efficient parallel processing, thereby improving response times and overall system performance.

On the other hand, the ES4649 offers an even more powerful setup, with the option to support high core counts and a larger memory footprint. This feature is particularly beneficial for enterprises that run demanding applications requiring substantial processing power and memory capacity. Both models support DDR4 memory, ensuring faster data access and overall system efficiency.

Storage adaptability is another key characteristic of these servers. The ES4625 and ES4649 come with multiple drive bays supporting various storage options, including SSDs and traditional HDDs. This flexibility allows organizations to configure their storage according to their specific performance and capacity needs. With support for advanced storage technologies like NVMe, enterprises can achieve unparalleled data transfer speeds, which is crucial for data-intensive applications.

In terms of manageability, both models are equipped with Microsoft’s innovative management tools. The integration of these tools facilitates easy monitoring, troubleshooting, and maintenance of server health and performance, significantly reducing downtime. Moreover, the servers are designed with enhanced security features to protect against unauthorized access and data breaches, ensuring that sensitive information remains secure.

Energy efficiency is another critical characteristic of the ES4625 and ES4649. These servers are designed with power-saving technologies that reduce energy consumption without compromising performance. This aspect is particularly advantageous for businesses looking to lower their operational costs and carbon footprint.

Overall, the Microsoft ES4625 and ES4649 offer a compelling combination of performance, flexibility, and security. They are engineered to support the increasingly complex demands of modern enterprise environments, making them a valuable investment for organizations seeking reliable, high-performing server solutions. Whether for virtualized workloads, cloud services, or heavy data computations, these servers are designed to deliver exceptional results.