3 Configuring the Switch

the high throughput and low latency of switching by enabling the traffic to bypass the routing engine once the path calculation has been performed.

Routing Path Management

Routing Path Management involves the determination and updating of all the routing information required for packet forwarding, including:

Handling routing protocols

Updating the routing table

Updating the Layer 3 switching database

Routing Protocols

The switch supports both static and dynamic routing.

Static routing requires routing information to be stored in the switch either manually or when a connection is set up by an application outside the switch.

Dynamic routing uses a routing protocol to exchange routing information, calculate routing tables, and respond to changes in the status or loading of the network.

The switch supports RIP, RIP-2 and OSPFv2 dynamic routing protocols.

RIP and RIP-2 Dynamic Routing Protocols

The RIP protocol is the most widely used routing protocol. RIP uses a distance-vector-based approach to routing. Routes are determined on the basis of minimizing the distance vector, or hop count, which serves as a rough estimate of transmission cost. Each router broadcasts its advertisement every 30 seconds, together with any updates to its routing table. This allows all routers on the network to learn consistent tables of next hop links which lead to relevant subnets.

OSPFv2 Dynamic Routing Protocol

OSPF overcomes all the problems of RIP. It uses a link state routing protocol to generate a shortest-path tree, then builds up its routing table based on this tree. OSPF produces a more stable network because the participating routers act on network changes predictably and simultaneously, converging on the best route more quickly than RIP. Moreover, when several equal-cost routes to a destination exist, traffic can be distributed equally among them.

Non-IP Protocol Routing

The switch supports IP routing only. Non-IP protocols such as IPX and Appletalk cannot be routed by this switch, and will be confined within their local VLAN group unless bridged by an external router.

To coexist with a network built on multilayer switches, the subnetworks for non-IP protocols must follow the same logical boundary as that of the IP subnetworks. A separate multi-protocol router can then be used to link the subnetworks by connecting to one port from each available VLAN on the network.

3-206

Page 258
Image 258
Microsoft ES4625, ES4649 RIP and RIP-2 Dynamic Routing Protocols, OSPFv2 Dynamic Routing Protocol, Non-IP Protocol Routing

ES4649, ES4625 specifications

The Microsoft ES4625 and ES4649 are advanced enterprise-grade servers designed to meet the demands of modern data centers. They blend cutting-edge technology with robust performance, making them an ideal choice for businesses that require reliable processing capabilities, enhanced storage solutions, and improved energy efficiency.

One of the standout features of the ES4625 is its powerful processing capability. Equipped with the latest Intel Xeon Scalable processors, the server can handle a significant workload, making it suitable for various applications, including virtualization, cloud computing, and big data analytics. The multi-core architecture allows for efficient parallel processing, thereby improving response times and overall system performance.

On the other hand, the ES4649 offers an even more powerful setup, with the option to support high core counts and a larger memory footprint. This feature is particularly beneficial for enterprises that run demanding applications requiring substantial processing power and memory capacity. Both models support DDR4 memory, ensuring faster data access and overall system efficiency.

Storage adaptability is another key characteristic of these servers. The ES4625 and ES4649 come with multiple drive bays supporting various storage options, including SSDs and traditional HDDs. This flexibility allows organizations to configure their storage according to their specific performance and capacity needs. With support for advanced storage technologies like NVMe, enterprises can achieve unparalleled data transfer speeds, which is crucial for data-intensive applications.

In terms of manageability, both models are equipped with Microsoft’s innovative management tools. The integration of these tools facilitates easy monitoring, troubleshooting, and maintenance of server health and performance, significantly reducing downtime. Moreover, the servers are designed with enhanced security features to protect against unauthorized access and data breaches, ensuring that sensitive information remains secure.

Energy efficiency is another critical characteristic of the ES4625 and ES4649. These servers are designed with power-saving technologies that reduce energy consumption without compromising performance. This aspect is particularly advantageous for businesses looking to lower their operational costs and carbon footprint.

Overall, the Microsoft ES4625 and ES4649 offer a compelling combination of performance, flexibility, and security. They are engineered to support the increasingly complex demands of modern enterprise environments, making them a valuable investment for organizations seeking reliable, high-performing server solutions. Whether for virtualized workloads, cloud services, or heavy data computations, these servers are designed to deliver exceptional results.